共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper describes a proposal to improve the design of scanning electron microscopes (SEMs). The design is based upon using an SEM column similar to the conventional one, magnetic sector plates and a mixed field immersion objective lens. The optical axis of the SEM column lies in the horizontal direction and the primary beam is turned through 90 degrees before it reaches the specimen. This arrangement allows for the efficient collection, detection and spectral analysis of the scattered electrons on a hemispherical surface that is located well away from the rest of the SEM column. The proposed SEM design can also be easily extended to incorporate time multiplexed columns and multi-column arrays. 相似文献
2.
Imaging connected porosity of crystalline rock by contrast agent‐aided X‐ray microtomography and scanning electron microscopy 下载免费PDF全文
J. KUVA J. SAMMALJÄRVI J. PARKKONEN M. SIITARI‐KAUPPI M. LEHTONEN T. TURPEINEN J. TIMONEN M. VOUTILAINEN 《Journal of microscopy》2018,270(1):98-109
We set out to study connected porosity of crystalline rock using X‐ray microtomography and scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM‐EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X‐ray microtomography and SEM‐EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X‐ray microtomography and SEM‐EDS. The samples were imaged with X‐ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X‐ray microtomography. CsCl inside the samples was successfully detected with X‐ray microtomography and it had completely penetrated all six samples. SEM‐EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X‐ray microtomography. 相似文献
3.
The accuracy and precision of quantitative energy-dispersive x-ray spectrometry in the environmental scanning electron microscope have been estimated using a series of copper / gold alloys of known composition. The mean values (five to six replicate experiments) had relative errors within +/- 5%, and most were within +/- 3.5%. All relative standard deviations were < 5% and most were < 3%. Since the standard specimens were large (approximately 500 microm) in diameter, electron scattering in the 2 torr of water vapor above the specimen did not affect the results. This level of accuracy and precision was possible only by using a novel specimen surface charge neutralization scheme. 相似文献
4.
5.
A. R. P. Bertocco I. P. Migacz V. L. P. Santos C. R. C. Franco R. Z. Silva R. A. Yunes V. Cechinel‐Filho J. M. Budel 《Microscopy research and technique》2017,80(8):831-837
Piper solmsianum C.DC., which is popularly known as pariparoba, is a shrub that measures 1–3 m in height and it inhabits areas with wet tropical soils. The objective of this study was to analyze the leaf and stem anatomy using light microscopy, scanning electron micrographs, and energy‐dispersive X‐ray spectroscopy in order to provide information for species identification. The anatomical profile showed the following main microscopic markers: hypostomatic leaf; hypodermis layer on both sides; pearl glands; biconvex midrib shape; five collateral vascular bundles in open arc with the central bundle larger than the others; circular stem shape; collateral vascular bundles arranged in two rings; sinuous sclerenchymatic sheath in the pith; secretory idioblasts; and starch grains in the mesophyll, in the ground parenchyma of the midrib, petiole, and in the stem; and six morphotypes of calcium oxalate crystals (styloids, cuneiform, tabular crystal rosettes, cuneiform crystal rosettes, elongated square dipyramids, as well as very elongated square dipyramids). 相似文献
6.
A device has been developed and used successfully on two models of the environmental scanning electron microscope that allows low-magnification imaging of about 30x, significantly better than the original 200x low-magnification imaging limit. This was achieved by using an additional aperture to limit the pressure at a point where it will not block the electron beam, and a larger aperture plate for the combination final aperture/secondary electron signal collection surface that also does not block the electron beam significantly. 相似文献
7.
Eric Doehne 《Scanning》1997,19(2):75-78
Spurious x-ray signals, which previously prevented high-resolution energy-dispersive x-ray analysis (EDS) in the environmental scanning electron microscope (ESEM), can be corrected using a simple method presented here. As the primary electron beam travels through the gas in the ESEM chamber, a significant fraction of the primary electrons is scattered during collisions with gas molecules. These scattered electrons form a broad skirt that surrounds the primary electron beam as it impacts the sample. The correction method assumes that changes in the width of the electron skirt with pressure are less important than changes in the skirt intensity; this method works as follows: The influence of the gas on the overall x-ray data is determined by acquiring EDS spectra at two pressures. Subtracting the two spectra provides us with a difference spectrum which is then used to correct the original data, using extrapolation, back to the x-ray spectrum expected under high-vacuum conditions. Low-noise data are required to resolve small spectral peaks; however, the principle should apply equally to x-ray maps and even to low-magnification images. 相似文献
8.
Newbury DE 《Scanning》2004,26(3):103-114
Rough samples with topography on a scale that is much greater than the micrometer dimensions of the electron interaction volume present an extreme challenge to quantitative electron beam x-ray microanalysis with energy-dispersive x-ray spectrometry. Conventional quantitative analysis procedures for flat, bulk specimens become subject to large systematic errors due to the action of geometric effects on electron scattering and the x-ray absorption path compared with the ideal flat sample. The best practical approach is to minimize geometric effects through specimen reorientation using a multiaxis sample stage to obtain the least compromised spectrum. When rough samples must be analyzed, corrections for geometric factors are possible by the peak-to-local background (P/B) method. Correction factors as a function of photon energy can be determined by the use of reference background spectra that are either measured locally or calculated from pure element spectra and estimated compositions. Significant improvements in accuracy can be achieved with the P/B method over conventional analysis with simple normalization. 相似文献
9.
Maria Angélica Hueb De Menezes Oliveira Carolina Paes Torres Jaciara Miranda Gomes‐Silva Michelle Alexandra Chinelatti Fernando Carlos Hueb De Menezes Regina Guenka Palma‐Dibb Maria Cristina Borsatto 《Microscopy research and technique》2010,73(5):572-577
Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X‐Ray diffraction (XRD) and Energy dispersive X‐ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal‐Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel‐dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc. 相似文献
10.
This paper discusses a new approach to focusing and astigmatism correction based on the fast fourier transforms (FFTs) of scanning electron microscopy (SEM) images. From the FFTs, it is possible to obtain information on the severity of the defocus and astigmatism. This information is then processed by an algorithm to perform real-time focusing and astigmatism correction on the SEM. The algorithm has been tested on defocused and astigmatic images of different samples, including those with highly directional features. Experiments show that the images obtained after running the algorithm can be as good as those that an experienced SEM operator can achieve. 相似文献
11.
Following Na-hypochlorite digestion of lung tissue, mineral particles extracted in the chloroform layer were deposited directly on a pre-smoothed carbon planchet for combined scanning electron microscopy and X-ray energy dispersive spectrometry (SEM and XEDS). Total mineral particle counts were obtained, and detailed physical characteristics of the fibrous particles were documented at 600, 1,500, 4,500 and 9,000 x in three lungs without, and one lung with, histories of occupational exposure. This preparation method was simple, collected more than 99% of identifiable mineral particles in the chloroform layer, gave excellent object to background contrast without heavy metal coatings, and was suitable for XEDS. Comparable fibrous particles from the chloroform layer could also be studied by selected-area electron diffraction to complement the results of XEDS. By this method, we found particles or fibers larger than 0.1 μm were readily counted and measured at 4,500 x. At 600 x, ferruginous bodies were found to be more than twice in number than when sought for by light microscopy. It was determined that 4,500 x is the most efficient magnification to examine and diagnose this type of specimen. The present study illustrates the importance of determining the most efficient magnification to be utilized in particle counts. 相似文献
12.
Atomic force microscopy (AFM) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) have been used for both morphological and elemental mass analysis study of atmospheric particles. As part of the geometrical particle analysis, and in addition to the traditional height profile measurement of individual particles, AFM was used to measure the volume relative to the projection area for each particle separately, providing a particle shape model. The element identification was done by the EDS analysis, and the element mass content was calculated based on laboratory calibration with particles of known composition. The SEM-EDS mass measurements from two samples collected at 150 and 500 m above the surface of the Mediterranean Sea were found to be similar to mass calculations derived from the AFM volume measurements. The AFM results show that the volume of most of the aerosols that were identified as soluble marine sulfate and nitrate aerosol particles can be better estimated using cylindrical shapes than spherical or conical geometry. 相似文献
13.
Newbury DE 《Scanning》2005,27(5):227-239
A third-generation silicon drift detector (SDD) in the form of a silicon multicathode detector (SMCD) was tested as an analytical x-ray spectrometer on a scanning electron microscope. Resolution, output count rate, and spectral quality were examined as a function of the detector peaking time from 8 micros to 250 ns and over a range of input count rate (dead time). The SDD-SMCD (50 mm2 active area) produced a resolution of 134 eV with a peaking time of 8 micros. The peak width and peak channel were nearly independent of the input count rate (at 8 micros peaking time, the peak width degradation was 0.003 eV/percent dead time and peak position change was -0.7 eV over the dead time range tested). Maximum output count rates as high as 280 kHz were obtained with a 500 ns peaking time (188 eV resolution) and 500 kHz with a 250 ns peaking time (217 eV resolution). X-ray spectrum imaging was achieved with a pixel dwell time as short as 10 ms (with 1.3 ms overhead) in which a 2048 channel (10 eV/channel) spectrum with 2-byte intensity range was recorded at each pixel (scanned at 128 x 128). With a 220 kHz output count rate, a minor constituent of iron (present at a concentration of 0.04 mass fraction or 4 weight %) in an aluminum-nickel alloy could be readily detected in the x-ray maps derived from the x-ray spectrum image database accumulated in 185 s. 相似文献
14.
Both image quality and the accuracy of x-ray analysis invariable pressure scanning electron microscopes (VPSEMs) are often limited by the spread of the primary electronbeam due to scattering by the introduced gas. The degree of electron scattering depends partly on the atomic number Z of the gas, and the use of a low Z gas such as helium should reduce beam scattering and enhance image quality. Using anuncoated test sample of copper iron sulphide inclusions in calcium fluorite, we show that the reduction in beam scatter produced by helium is more than sufficient to compensate for its reduced efficiency of charge neutralisation. The relative insensitivity to pressure of x-ray measurements in a helium atmosphere compared with air, and the consequent ability to work over a wider range of working distances, pressures, and voltages, make helium potentially the gas of choice for many routine VPSEM applications. 相似文献
15.
Robert A. Carlton 《Scanning》1997,19(2):85-91
The objective of this investigation was to evaluate the practical effects of electron beam broadening in the environmental scanning electron microscope (ESEM) on particle x-ray microanalysis and to determine some of the optimum operating conditions for this type of analysis. Four sets of experiments were conducted using a Faraday cage and particles of copper, glass, cassiterite, andrutile. The accelerating voltage and chamber pressure varied from 20 to 10 kV and from 665–66 Pa (5.0 to 0.5 torr), respectively. The standard gaseous secondary electron detectors (GSED) and the long environmental secondary dectectors (ESD) for the ESEM were evaluated at different working distances. The effect of these parameters on the presence of artifact peaks was evaluated. The particles were mounted on carbon tape on an aluminum specimen mount and were analyzed individually and as a mixture. Substrate peaks were present in almost all of the spectra. The presence of neighboring particle peaks and the number of counts in these depended upon the operating conditions. In general, few of these peaks were observed with the long ESD detector at 19 mm working distance and at low chamber pressures. More peaks and counts were observed with a deviation from these conditions. The most neighboring peaks and counts were obtained with the GSED detector at 21.5 mm working distance, 10 kV accelerating voltage, and 665 Pa (5.0 torr) chamber pressure. The results of these experiments support the idea that the optimum instrumental operating conditions for EDS analysis in the ESEM occur by minimizing the gas path length and the chamber water vapor pressure, and by maximizing the accelerating voltage. The results suggest that the analyst can expect x-ray counts from the mounting materials. These tests strongly support the recommendation of the manufacturer to use the long ESD detector and a 19 mm working distance for EDS analysis. The results of these experiments indicate that neighboring particles millimeters from the target may contribute x-ray counts to the spectrum. 相似文献
16.
A simple method is described to determine the effective gas path length when incident electrons scatter in the gas above the specimen. This method is based on the measurement of a characteristic x-ray line emitted from a region close to the incident beam. From various experimental measurements performed on various microscopes, it is shown that the effective gas path length may increase with the chamber pressure and that it is also often dependent of the type of x-ray bullet. 相似文献
17.
This experimental study aims to evaluate the radiopacity of various fiber post materials and to determine the effects of material composition as analyzed by energy‐dispersive X‐ray spectrophotometry (EDS; EDAX Team Software; EDAX, Inc., Mahwah, NJ) on radiopacity. Five specimens of seven fiber post materials with 2‐mm thickness were prepared and digital radiographs were taken with an aluminum stepwedge (SW) and 2‐mm‐thick tooth slice. The mean gray values (MGVs) of specimens were measured using the histogram function of a computer graphics program (Adobe Photoshop CS6; Adobe System, Inc., San Jose, CA). The MGVs of fiber post materials were compared with an aluminum SW and dentin of equal thickness. The fiber post specimens were examined by scanning electron microscopy and EDS analysis performed for the elementary analysis of material composition. The MGVs of fiber posts ranged between 83.67 ± 3.64 and 57.80 ± 7.08 pixels. Materials were sorted in descending order of MGV as follows: Reforpost, Carbopost, D.T. Light‐Post, Easypost, Glassix Radiopaque, Dentolic Glass Fiber Post, and RelyX Fiber Post. All fiber posts demonstrated significantly higher radiopacity values than 2‐mm‐thick aluminum (p < .05). EDS analysis results indicated that the evaluated fiber posts included various elements for radiopacity in different ratios. All tested fiber post materials showed radiopacity values above the minimum recommendations of the International Organization for Standardization. EDS analysis results indicated that each manufacturer used different compositions of elements like zirconium, barium, titanium, and iron for achieving radiopacity in materials. 相似文献
18.
A method for preparing and observing clay platelets for size and shape analysis using scanning electron microscopy (SEM) was developed. Samples of the clay platelets were prepared by polyelectrolyte-assisted adsorption onto a pyrolytic graphite surface. The use of graphite as a substrate was advantageous because of the low number of secondary electrons emitted from it during imaging by SEM. The resulting low background noise allowed the emission from the approximately 1 nm thick clay sheets to be clearly visualized. Images of centrifuged montmorillonite showed large exfoliated platelets with lateral dimensions between 200 and 600 nm. In contrast, uncentrifuged montmorillonite appeared to contain a large amount of unexfoliated clusters. Although it was not possible to obtain high-quality images of the smaller sheets of Laponite RD, the images of this material did contain size features comparable to the approximately 30 nm2 size reported previously using light scattering, as well as transmission electron and atomic force microscopies. 相似文献
19.
Recent software and hardware advances in the field of electron backscatter diffraction have led to an increase in the rate of data acquisition. Combining automated stage movements with conventional beam control have allowed researchers to collect data from significantly larger areas of samples than was previously possible. This paper describes a LabVIEW? and AutoIT© code which allows for increased flexibility compared to commercially available software. The source code for this software has been made available in the online version of this paper. 相似文献
20.
Newbury DE 《Scanning》2007,29(4):137-151
Automated peak identification in electron beam excited X-ray microanalysis with energy dispersive X-ray spectrometry (EDS) is subject to occasional mistakes even on well-separated, high-intensity peaks arising from major constituents. The problem is exacerbated when analysis conditions are restricted to operation in the "low beam energy scanning electron microscopy" (i.e. "low voltage scanning electron microscopy" or LVSEM) regime where the incident beam energy is 5 keV or less. These low beam energy microanalysis conditions force the analyst to use low fluorescence yield L-shell and M-shell peaks rather than higher yield K-shell and L-shell peaks typically selected for elements of intermediate and high atomic number under conventional high beam energy (>10 keV) conditions. Misidentifications can arise in automated peak identification procedures when only a single energy channel is used to characterize an EDS peak. The effect of the EDS measurement process is to convolve the closely spaced Lalpha-Lbeta and Malpha-Mbeta peaks into a single peak with a peak channel shift of 20 eV or more from the Lalpha or Malpha value, which is typically sought in an X-ray database. An extensive list of problem situations encountered in low beam energy microanalysis is presented based upon observed peak identification mistakes as well as likely troublesome situations based upon proximity in peak energy. Robust automatic peak identification requires implementation of peak fitting that utilizes the full peak shape. 相似文献