首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compartmentalization of cAMP-dependent protein kinase is achieved in part by interaction with A-kinase anchoring proteins (AKAPs). All of the anchoring proteins identified previously target the kinase by tethering the type II regulatory subunit. Here we report the cloning and characterization of a novel anchoring protein, D-AKAP1, that interacts with the N terminus of both type I and type II regulatory subunits. A novel cDNA encoding a 125-amino acid fragment of D-AKAP1 was isolated from a two-hybrid screen and shown to interact specifically with the type I regulatory subunit. Although a single message of 3.8 kilobase pairs was detected for D-AKAP1 in all embryonic stages and in most adult tissues, cDNA cloning revealed the possibility of at least four splice variants. All four isoforms contain a core of 526 amino acids, which includes the R binding fragment, and may be expressed in a tissue-specific manner. This core sequence was homologous to S-AKAP84, including a mitochondrial signal sequence near the amino terminus (Lin, R. Y., Moss, S. B., and Rubin, C. S. (1995) J. Biol. Chem. 270, 27804-27811). D-AKAP1 and the type I regulatory subunit appeared to have overlapping expression patterns in muscle and olfactory epithelium by in situ hybridization. These results raise a novel possibility that the type I regulatory subunit may be anchored via anchoring proteins.  相似文献   

2.
3.
Neuronal A kinase anchor protein (AKAP) homologs, such as AKAPs 75 and 150, tether cAMP-dependent protein kinase II (PKAII) isoforms to the postsynaptic cytoskeleton, thereby creating target sites for cAMP action. These AKAPs, which bind regulatory subunits (RIIs) of PKAII, are also expressed in certain non-neuronal cells. Non-neuronal cell lines that stably express wild type and mutant AKAP75 transgenes were generated to investigate the extraneuronal function of AKAPs. In non-neuronal cells, AKAP75 accumulates selectively in the actin-rich, cortical cytoskeleton in close proximity with the plasma membrane. AKAP75 efficiently sequesters cytoplasmic RIIalpha and RIIbeta (PKAII isoforms) and translocates these polypeptides to the cell cortex. Two structural modules in AKAP75, T1 (residues 27-48), and T2 (residues 77-100), are essential for targeting AKAP75.RII complexes to the cortical cytoskeleton. Deletions or amino acid substitutions in T1 and/or T2 result in the dispersion of both AKAP75 and RII subunits throughout the cytoplasm. AKAP75 is co-localized with F-actin and fodrin in the cortical cytoskeleton. Incubation of cells with 5 microM cytochalasin D disrupts actin filaments and dissociates actin from the cell cortex. In contrast, the bulk of AKAP75 and fodrin remain associated with the cortical region of cytochalasin D-treated cells. Thus, targeting of AKAP75 does not depend upon direct binding with F-actin. Rather, AKAP75 (like fodrin) may be associated with a multiprotein complex that interacts with integral plasma membrane proteins.  相似文献   

4.
The fibrous sheath is a unique cytoskeletal structure in the sperm flagellum believed to modulate sperm motility. FSC1 is the major structural protein of the fibrous sheath. The yeast two-hybrid system was used to identify other proteins that contribute to the structure of the fibrous sheath or participate in sperm motility. When FSC1 was used as the bait to screen a mouse testis cDNA library, two clones were isolated encoding the type Ialpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase. Deletion analysis using the yeast two-hybrid system and in vitro binding assays with glutathione S-transferase-FSC1 fusion proteins identified two RIalpha tethering domains on FSC1. A domain located at residues 219-232 (termed domain A) corresponds to the reported tethering domain for a type II regulatory subunit (RII) of cAMP-dependent protein kinase, indicating that this binding domain has dual specificity to RI and RII. Another RIalpha tethering site (termed domain B) at residues 335-344 shows specific binding of RIalpha and had no significant sequence homology with known RII tethering domains. However, helical wheel projection analysis indicates that domain B is likely to form an amphipathic helix, the secondary structure of RII tethering domains of protein kinase A anchoring proteins. This was supported by the finding that site-directed mutagenesis to disrupt the amphipathic helix eliminated RIalpha binding. This is apparently the first report of an RIalpha-specific protein kinase A anchoring protein tethering domain.  相似文献   

5.
Ral-binding protein 1 (RalBP1) is a putative effector protein of Ral and exhibits a GTPase activating activity for Rac and CDC42. To clarify the function of RalBP1, we isolated a novel protein that interacts with RalBP1 by yeast two-hybrid screening and designated it POB1 (partner of RalBP1). POB1 consists of 521 amino acids, shares a homology with Eps15, which has been identified as an epidermal growth factor (EGF) receptor substrate, and has two proline-rich motifs. The POB1 mRNA was expressed in cerebrum, cerebellum, lung, kidney, and testis. POB1 interacted with RalBP1 in COS cells and the C-terminal region of POB1 was responsible for this interaction. The binding domain of RalBP1 to POB1 was distinct from its binding domain to Ral. Ral and POB1 simultaneously interacted with RalBP1 in COS cells. The binding of POB1 to RalBP1 did not affect the GTPase activating activity of RalBP1. Furthermore, POB1 bound to Grb2 but not to Nck or Crk. POB1 was tyrosine-phosphorylated in COS cells upon stimulation with EGF and made a complex with EGF receptor. These results suggest that RalBP1 makes a complex with POB1 and that this complex may provide a link between tyrosine kinase, Src homology 3 (SH3)-containing protein, and Ral.  相似文献   

6.
Classical A kinase anchor proteins (AKAPs) preferentially tether type II protein kinase A (PKAII) isoforms to sites in the cytoskeleton and organelles. It is not known if distinct proteins selectively sequester regulatory (R) subunits of type I PKAs, thereby diversifying functions of these critical enzymes. In Caenorhabditis elegans, a single type I PKA mediates all aspects of cAMP signaling. We have discovered a cDNA that encodes a binding protein (AKAPCE) for the regulatory subunit (RCE) of C. elegans PKAICE. AKAPCE is a novel, highly acidic RING finger protein composed of 1,280 amino acids. It binds RI-like RCE with high affinity and neither RIIalpha nor RIIbeta competitively inhibits formation of AKAPCE.RCE complexes. The RCE-binding site was mapped to a segment of 20 amino acids in an N-terminal region of AKAPCE. Several hydrophobic residues in the binding site align with essential Leu and Ile residues in the RII-selective tethering domain of prototypic mammalian AKAPs. However, the RCE-binding region in AKAPCE diverges sharply from consensus RII-binding sites by inclusion of three aromatic amino acids, exclusion of a highly conserved Leu or Ile at position 8 and replacement of C-terminal hydrophobic amino acids with basic residues. AKAPCE.RCE complexes accumulate in intact cells.  相似文献   

7.
In a search for new partners of the activated form of Rac GTPase, we have isolated through a two-hybrid cloning procedure a human cDNA encoding a new GTPase-activating protein (GAP) for Rho family GTPases. A specific mRNA of 3.2 kilobases was detected in low abundance in many cell types and found highly expressed in testis. A protein of the predicted size 58 kDa, which we call MgcRacGAP, was detected in human testis as well as in germ cell tumor extracts by immunoblotting with antibodies specific to recombinant protein. In vitro, the GAP domain of MgcRacGAP strongly stimulates Rac1 and Cdc42 GTPase activity but is almost inactive on RhoA. N-terminal to its GAP domain, MgcRacGAP contains a cysteine-rich zinc finger-like motif characteristic of the Chimaerin family of RhoGAPs. The closest homolog of MgcRacGAP is RotundRacGAP, a product of the Drosophila rotund locus. In situ hybridization experiments in human testis demonstrate a specific expression of mgcRacGAP mRNA in spermatocytes similar to that of rotundRacGAP in Drosophila testis. Therefore, protein sequence similarity and analogous developmental and tissue specificities of gene expression support the hypothesis that RotundRacGAP and MgcRacGAP have equivalent functions in insect and mammalian germ cells. Since rotundRacGAP deletion leads to male sterility in the fruit fly, the mgcRacGAP gene may prove likewise to play a key role in mammalian male fertility.  相似文献   

8.
In human T-lymphocytes the Src family protein tyrosine kinase p59(fyn) associates with three phosphoproteins of 43, 55, and 85 kDa (pp43, pp55, and pp85). Employing a GST-Fyn-Src homology 2 (SH2) domain fusion protein pp55 was purified from lysates of Jurkat T-cells. Molecular cloning of the pp55 cDNA reveals that the pp55 gene codes for a so far nondescribed polypeptide of 359 amino acids that comprises a pleckstrin homology domain, a C-terminal SH3 domain, as well as several potential tyrosine phosphorylation sites, among which one fulfills the criteria to bind Src-like SH2 domains with high affinity. Consistent with this observation, pp55 selectively binds to isolated SH2 domains of Lck, Lyn, Src, and Fyn but not to the SH2 domains of ZAP70, Syk, Shc, SLP-76, Grb2, phosphatidylinositol 3-kinase, and c-abl in vitro. Based on these properties the protein was termed SKAP55 (src kinase-associated phosphoprotein of 55 kDa). Northern blot analysis shows that SKAP55 mRNA is preferentially expressed in lymphatic tissues. SKAP55 is detected in resting human T-lymphocytes as a constitutively tyrosine phosphorylated protein that selectively interacts with p59(fyn). These data suggest that SKAP55 represents a novel adaptor protein likely involved in Fyn-mediated signaling in human T-lymphocytes.  相似文献   

9.
Signaling through the CD95/Fas/APO-1 death receptor plays a critical role in the homeostasis of the immune system. RICK, a novel protein kinase that regulates CD95-mediated apoptosis was identified and characterized. RICK is composed of an N-terminal serine-threonine kinase catalytic domain and a C-terminal region containing a caspase-recruitment domain. RICK physically interacts with CLARP, a caspase-like molecule known to bind to Fas-associated protein with death domain (FADD) and caspase-8. Expression of RICK promoted the activation of caspase-8 and potentiated apoptosis induced by Fas ligand, FADD, CLARP, and caspase-8. Deletion mutant analysis revealed that both the kinase domain and caspase-recruitment domain were required for RICK to promote apoptosis. Significantly, expression of a RICK mutant in which the lysine of the putative ATP-binding site at position 38 was replaced by a methionine functioned as an inhibitor of CD95-mediated apoptosis. Thus, RICK represents a novel kinase that may regulate apoptosis induced by the CD95/Fas receptor pathway.  相似文献   

10.
The polymerase chain reaction was used to amplify protein tyrosine phosphatase (PTPase)-related cDNA from a template of total RNA isolated from human skeletal muscle. A novel PTPase, which we term PTP-PEST, was detected by this method. The polymerase chain reaction fragment was used to screen two different HeLa cell libraries to obtain full length cDNA clones. The cDNA predicts a protein of 510 amino acids, approximately 60 kDa, that does not contain an obvious signal sequence or transmembrane segment suggesting it is a nonreceptor type enzyme. The PTPase domain is located in the N-terminal portion of the molecule and displays approximately 35% identity to other members of this family of enzymes. The C-terminal segment is rich in Pro, Glu, Asp, Ser, and Thr residues, possessing features of PEST motifs which have previously been identified in proteins with very short intracellular half-lives. The protein was expressed in Escherichia coli as a fusion product with glutathione S-transferase. Intrinsic activity was demonstrated in vitro against a variety of phosphotyrosine-containing substrates including BIRK, the autophosphorylated cytoplasmic kinase domain of the insulin receptor beta subunit. It did not dephosphorylate phosphoseryl-phosphorylase a. PTP-PEST mRNA is broadly distributed in a variety of cell lines. Stimulation of human rhabdomyosarcoma A204 cells, a transformed muscle line, with insulin led to an approximately 4-fold induction of PTP-PEST mRNA within 36 h.  相似文献   

11.
12.
The cytoplasmic face of the Golgi contains a variety of proteins with coiled-coil domains. We identified one such protein in a yeast two-hybrid screen, using as bait the peripheral Golgi phosphatidylinositol(4,5)P2 5-phosphatase OCRL1 that is implicated in a human disease, the oculocerebrorenal syndrome. The approximately 2.8-kilobase mRNA is ubiquitously expressed and abundant in testis; it encodes a 731-amino acid protein with a predicted mass of 83 kDa. Antibodies against the sequence detect a novel approximately 84-kDa Golgi protein we termed golgin-84. Golgin-84 is an integral membrane protein with a single transmembrane domain close to its C terminus. In vitro, the protein inserts post-translationally into microsomal membranes with an N-cytoplasmic and C-lumen orientation. Cross-linking indicates that golgin-84 forms dimers, consistent with the prediction of an approximately 400-residue dimerizing coiled-coil domain in its N terminus. The dimerization potential is supported by a data base search that showed that the N-terminal 497 residues of golgin-84 contain a coiled-coil domain that when fused to the RET tyrosine kinase domain had the ability to activate it, forming the RET-II oncogene. Data base searching also indicates golgin-84 is similar in structure and sequence to giantin, a membrane protein that tethers coatamer complex I vesicles to the Golgi.  相似文献   

13.
Tyrosine phosphorylation is widely recognized as playing an important role in cell differentiation, proliferation and carcinogenesis. We used the polymerase chain reaction (PCR) method to identify protein tyrosine kinases that were expressed in the skin. Mixed oligonucleotide probes were used to amplify and screen neonatal murine skin mRNA for clones encoding amino acid contiguities, the conservation of which is characteristic of the protein tyrosine kinase family. When the PCR products were sequenced, a novel clone encoding protein tyrosine kinase, PTK70, was identified. A full-length cDNA was isolated from a mouse thymus cDNA library. The nucleotide and deduced amino acid sequence showed that it featured src-homology (SH) 2 domain, SH3 domain and kinase domain like other src family protein tyrosine kinases, but lacked the N-terminal myristylation site and C-terminal tyrosine residue. Although the mRNA of PTK70 was detected in various tissues ubiquitously, the degree of its expression differed among tissues. Murine skin is one in which PTK70 was expressed strongly, with its expression being much stronger in the epidermis and in the cell line derived from murine keratinocytes than in those from melanoma or fibroblast cell lines. These evidences suggest that PTK70 may be involved in proliferation or differentiation of keratinocytes in the skin.  相似文献   

14.
Chicken acidic leucine-rich EGF-like domain containing brain protein (CALEB) was identified by combining binding assays with immunological screens in the chicken nervous system as a novel member of the EGF family of differentiation factors. cDNA cloning indicates that CALEB is a multidomain protein that consists of an NH2-terminal glycosylation region, a leucine-proline-rich segment, an acidic box, a single EGF-like domain, a transmembrane, and a short cytoplasmic stretch. In the developing nervous system, CALEB is associated with glial and neuronal surfaces. CALEB is composed of a 140/130-kD doublet, an 80-kD band, and a chondroitinsulfate-containing 200-kD component. The latter two components are expressed in the embryonic nervous system and are downregulated in the adult nervous system. CALEB binds to the extracellular matrix glycoproteins tenascin-C and -R. In vitro antibody perturbation experiments reveal a participation of CALEB in neurite formation in a permissive environment.  相似文献   

15.
The carboxyl-terminal 19 amino acids of the type I alpha regulatory subunit (RI alpha) of cAMP-dependent protein kinase (PKA) were investigated to determine their contributions to cAMP selectivity. The parent RI alpha subunit contained an Ala to Thr mutation at position 334 so that it would bind both cAMP and cGMP with high affinity. Stop codons were introduced into the parent cDNA construct at positions corresponding to Val-375, Asn-372, Gln-370, and Cys-360. The purified, bacterially expressed proteins were characterized for their cAMP and cGMP dissociation properties. Site-selective cAMP analogs were used to compete against [3H]cAMP binding to the mutant RI alpha subunits to correctly assign fast and slow dissociation t1/2 values to the A and B domains. A greater than 60-fold drop in B domain t1/2 in the Asn-372-stop to Gln-370-stop transition implicated Tyr-371 as an important cAMP-binding determinant. A similar drop in [3H]cGMP t1/2 for the same transition suggested that the cGMP/cAMP selectivity was not altered. To test this further, Tyr-371 was mutated to Ala, Phe, and Arg in the parent construct. The cAMP and cGMP t1/2 values were determined, as were protein kinase activation constants (Ka) for holoenzymes formed from mutant RI alpha subunits and purified catalytic subunit. The Ka data suggested that mutation of Tyr-371 enhanced B domain cAMP selectivity. Isolated B domains containing Tyr-371-Arg or Tyr-371-Phe mutations were constructed, expressed, and purified to determine their relative inhibition constants (K'I) for cGMP vs cAMP. These data showed that B domain cAMP selectivity was minimally affected by alteration of Tyr-371. Based on these results, it is concluded that aromatic stacking is not important for determining B-domain cyclic nucleotide selectivity. It is proposed that the main function of Tyr-371 is stabilization of the B-domain cAMP-binding pocket through hydrogen bonding with Glu-324.  相似文献   

16.
17.
18.
The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2alpha (eIF2alpha). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2alpha, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and lambda repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.  相似文献   

19.
Based on increasing evidence that the type I R subunits as well as the type II R subunits localize to specific subcellular sites, we have carried out an extensive characterization of the stable dimerization domain at the N terminus of RIalpha. Deletion mutants as well as alanine scanning mutagenesis were used to delineate critical regions as well as particular amino acids that are required for homodimerization. A set of nested deletion mutants defined a minimum core required for dimerization. Two single site mutations on the C37H template, RIalpha(F47A) and RIalpha(F52A), were sufficient to abolish dimerization. In addition to serving as a dimerization motif, this domain also serves as a docking surface for binding to dual specificity anchoring proteins (D-AKAPs) (Huang, L. J., Durick, K., Weiner, J. A., Chun, J., and Taylor, S. S. (1997) J. Biol. Chem. 272, 8057-8064; Huang, L. J., Durick, K., Weiner, J. A., Chun, J., and Taylor, S. S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11184-11189). A similar strategy was used to map the sequence requirements for anchoring of RIalpha to D-AKAP1. Although dimerization appears to be essential for anchoring to D-AKAP1, anchoring can also be abolished by the following single site mutations: C37H, V20A, and I25A. These sites define "hot spots" for the anchoring surface since each of these dimeric proteins are deficient in binding to D-AKAP1. In contrast to earlier predictions, the alignment of the dimerization/docking domains of RIalpha and RII show striking similarities yet subtle differences not only in their secondary structure (Newlon, M. G., Roy, M., Hausken, Z. E., Scott, J. D., and Jennings. P. A. (1997) J. Biol. Chem. 272, 23637-23644) but also in the distribution of residues important for both docking and dimerization functions.  相似文献   

20.
Grb10 and its close homologues Grb7 and Grb14, belong to a family of adapter proteins characterized by a proline-rich region, a central PH domain, and a carboxyl-terminal Src homology 2 (SH2) domain. Their interaction with a variety of activated tyrosine kinase receptors is well documented, but their actual function remains a mystery. The Grb10 SH2 domain was isolated from a two-hybrid screen using the MEK1 kinase as a bait. We show that this unusual SH2 domain interacts, in a phosphotyrosine-independent manner, with both the Raf1 and MEK1 kinases. Mutation of the MEK1 Thr-386 residue, which is phosphorylated by mitogen-activated protein kinase in vitro, reduces binding to Grb10 in a two-hybrid assay. Interaction of Grb10 with Raf1 is constitutive, while interaction between Grb10 and MEK1 needs insulin treatment of the cells and follows mitogen-activated protein kinase activation. Random mutagenesis of the SH2 domain demonstrated that the Arg-betaB5 and Asp-EF2 residues are necessary for binding to the epidermal growth factor and insulin receptors as well as to the two kinases. In addition, we show that a mutation in Ser-betaB7 affects binding only to the receptors, while a mutation in Thr-betaC5 abrogates binding only to MEK1. Finally, transfection of Grb10 genes with specific mutations in their SH2 domains induces apoptosis in HTC-IR and COS-7 cells. These effects can be competed by co-expression of the wild type protein, suggesting that these mutants act by sequestering necessary signaling components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号