首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilateral retinal lesions have been made in and around the area centralis in 5 kittens 23-28 days of age. Twelve to 14 months later, microelectrode recordings were made in the LGN of these animals. Penetrations through the medial, deafferented portion of the nucleus encountered retinally innervated cells at the same rate as penetrations through the intact lateral half of the nucleus or through the LGN of normal adult cats. The correlation between orthodromic anc antidromic latency for LGN relay cells in experimental animals was reduced when compared to normal animals, and the percentage of cells receiving dual fast and slow retinal input was increased in experimental animals. These observations are interpreted as evidence that the medial portion of the LGN was reinnervated following the neonatal retinal lesions, and that the specificities that normally exist between relay cells and their retinal afferents in terms of axonal conduction velocity were not maintained during the course of this reinnervation.  相似文献   

2.
Samples of S1 dorsal root nerve fibers from cats of different pre- and postnatal ages were examined electron microscopically with regard to axon caliber and number of myelin lamellae. Each root was examined at four different cross-sectional levels. Two levels were situation close to the spinal cord entrance on each side of the peripheral (PNS) and central nervous system (CNS) border. The third and fourth levels were located more distally. The first compact myelin lamella was observed in the CNS part of the root in a 47-day-old fetus. In the 53-day-old fetus the degree of myelination was the same in the CNS as distal in the PNS part of the root. Surprisingly, all axons appeared unmyelinated close to the PNS-CNS border and remained so for a further 10-day period. After this time lag, this part of the root became myelinated and showed a rapid increase in myelin sheath thickness. Calculations of axonal growth, mesaxonal length, and myelin volume indicated a maturation process that progressed discontinuously. Myelination did not proceed in a strict somatofugal direction, but was a regionally differentiated process. The maximal myelin production, expressed as the increase in myelin volume per Schwann cell, was found during the second to fourth postnatal months, i.e., very late in development.  相似文献   

3.
4.
Electrophysiological recordings using conventional intracellular techniques were obtained from dorsal lateral geniculate nucleus (dLGN) neurons in brain slices from ME7 scrapie-infected mice at specific time points throughout the incubation period of the disease. Comparisons were made with age-matched control mice. A number of dLGN neurons from control and scrapie-infected mice were injected with biocytin in order to examine their cellular morphology. Mice were infected with ME7 scrapie by an intraocular route and the mean (+/- SEM) incubation period of the disease was 276 +/- 3.5 days. Our results indicate that there were no differences in the electrophysiological or morphological parameters of neurons recorded in ME7 scrapie-infected and age-matched control mice at any stage of the disease up to 240 days postinoculation. After this time, however, no detectable electrical activity was recorded in the dLGN. This study demonstrates that in the ME7 scrapie-infected dLGN, relay neurons with normal physiological and morphological properties are present even at an advanced stage of the disease at a time when the dLGN is known to be subject to marked pathological changes and a profound neuronal loss.  相似文献   

5.
Activity-dependent extracellular pH shifts were studied in slices of the rat dorsal lateral geniculate nucleus (dLGN) using double-barreled pH-sensitive microelectrodes. In 26 mM HCO3--buffered media, afferent activation (10 Hz, 5 s) elicited an early alkaline shift of 0.04+/-0.02 pH units associated with a later, slow acid shift of 0.05+/-0.03 pH units. Extracellular pH shifts in the ventral lateral geniculate nucleus were rare, and limited to acidifications of approximately 0.02 pH units. The alkaline shift in the dLGN increased in the presence of benzolamide (1-2 microM), an extracellular carbonic anhydrase inhibitor. The mean alkaline shift in benzolamide was 0.10+/-0.05 pH units. In 26 mM HEPES-buffered saline, the alkaline response averaged 0.09+/-0.03 pH units. The alkaline shifts persisted in 100 microM picrotoxin (PiTX) but were blocked by 25 microM CNQX/50 microM APV. If stimulation intensity was raised in the presence of CNQX/APV, a second alkalinization arose, presumably due to direct activation of dLGN neurons. The direct responses were amplified by benzolamide, and blocked by either 0 Ca2+/EGTA, Cd2+ or TTX. In 0 Ca2+, addition of 500 microM-5 mM Ba2+ restored the alkalosis. Alkaline shifts evoked with extracellular Ba2+ were larger and faster than those elicited by equimolar Ca2+. In summary, synchronous activation in the dLGN results in an extracellular H+ sink, via a Ca2+-dependent mechanism, similar to activity-dependent alkaline shifts in hippocampus.  相似文献   

6.
The areal and laminar distributions of the projection from the parvocellular part of laminae C of the dorsal lateral geniculate nucleus (Cparv) were studied in visual cortical areas of the cat with the anterograde tracing method by using wheat germ agglutinin conjugated to horseradish peroxidase. A particular objective of this study was to examine the central visual pathways of the W-cell system, the precise organization of which is still unknown. Because the Cparv in the cat is said to receive W-cell information exclusively from the retina and the superior colliculus, the results obtained would provide an anatomical substrate for the W-cell system organization in mammals. The results show that the cortical targets of the Cparv are areas 17, 18, 19, 20a, and 21a and the posteromedial lateral suprasylvian (PMLS) and ventral lateral suprasylvian(VLS) areas. In area 17, the projection fibers terminate in the superficial half of layer I; the lower two-thirds of layer III, extending to the superficial part of layer IV; and the deep part of layer IV, involving layer Va. These terminations form triple bands in area 17. The projection terminals in layer I are continuous, whereas those in layers III, IV, and Va distribute periodically, exhibiting a patchy appearance. In areas 18 and 19, the projection fibers terminate in the superficial half of layer I and in the full portions of layers III and IV, forming double bands. In these areas, the terminals in layer I are continuous, whereas those in layers III and IV distribute periodically, exhibiting a patchy appearance. In area 20a, area 21a, PMLS, and VLS, projection fibers terminate in the superficial part of layer I, in part of layer III, and in the full portion of layer IV, although they are far fewer in number than those seen in areas 17, 18, and 19. The present results demonstrate that the Cparv fibers terminate in a localized fashion in both the striate and the extrastriate cortical areas and that these W-cell projections are quite unique in their areal and laminar organization compared with the X- and Y-cell systems.  相似文献   

7.
Effects of saccades on individual neurons in the cat lateral geniculate nucleus (LGN) were examined under two conditions: during spontaneous saccades in the dark and during stimulation by large, uniform flashes delivered at various times during and after rewarded saccades made to small visual targets. In the dark condition, a suppression of activity began 200-300 ms before saccade start, peaked approximately 100 ms before saccade start, and smoothly reversed to a facilitation of activity by saccade end. The facilitation peaked 70-130 ms after saccade end and decayed during the next several hundred milliseconds. The latency of the facilitation was related inversely to saccade velocity, reaching a minimum for saccades with peak velocity >70-80 degrees /s. Effects of saccades on visually evoked activity were remarkably similar: a facilitation began at saccade end and peaked 50-100 ms later. When matched for saccade velocity, the time courses and magnitudes of postsaccadic facilitation for activity in the dark and during visual stimulation were identical. The presaccadic suppression observed in the dark condition was similar for X and Y cells, whereas the postsaccadic facilitation was substantially stronger for X cells, both in the dark and for visually evoked responses. This saccade-related regulation of geniculate transmission appears to be independent of the conditions under which the saccade is evoked or the state of retinal input to the LGN. The change in activity from presaccadic suppression to postsaccadic facilitation amounted to an increase in gain of geniculate transmission of approximately 30%. This may promote rapid central registration of visual inputs by increasing the temporal contrast between activity evoked by an image near the end of a fixation and that evoked by the image immediately after a saccade.  相似文献   

8.
9.
Higher organisms perceive information about external or internal physical or chemical stimuli with specialized sensors that encode characteristics of that stimulus by a train of action potentials. Usually, the location and modality of the stimulus is represented by the location and specificity of the receptor and the intensity of the stimulus and its temporal modulation is thought to be encoded by the instantaneous firing rate. Recent studies have shown that, primarily in cortical structures, special features of a stimulus also are represented in the temporal pattern of spike activity. Typical attributes of this time structure are oscillatory patterns of activity and synchronous discharges in spatially distributed neurons that respond to inputs evoked by a coherent object. The origin and functional significance of this kind of activity is less clear. Cortical, subcortical and even very peripheral sources seem to be involved. Most of the relevant studies were devoted to the mammalian visual system and cortical findings on temporally structured activity were reviewed recently (Eckhorn, 1994, Progr. Brain Res., Vol. 102, pp. 405-426; Singer and Gray, 1995, Annu. Rev. Neurosci., Vol. 18, pp. 555-586). Therefore, this article is designed to give an overview, especially of those studies concerned with the temporal structure of visual activity in subcortical centers of the primary visual pathway, which are the retina and the dorsal lateral geniculate nucleus (LGN). We discuss the mechanisms that possibly contribute to the generation and modulation of the subcortical activity time structure and we try to relate to each other the subcortical and cortical patterns of sensory activity.  相似文献   

10.
11.
Synchronization of spatially distributed responses in the cortex is often associated with periodic activity. Recently, synchronous oscillatory patterning was described for visual responses in retinal ganglion cells that is reliably transmitted by the lateral geniculate nucleus (LGN), raising the question of whether oscillatory inputs contribute to synchronous oscillatory responses in the cortex. We have made simultaneous multi-unit recordings from visual areas 17 and 18 as well as the LGN and the retina to examine the interactions between subcortical and cortical synchronization mechanisms. Strong correlations of oscillatory responses were observed between retina, LGN, and cortex, indicating that cortical neurons can become synchronized by oscillatory activity relayed through the LGN. This feedforward synchronization occurred with oscillation frequencies in the range of 60-120 Hz and was most pronounced for responses to stationary flashed stimuli and more frequent for cells in area 18 than in area 17. In response to moving stimuli, by contrast, subcortical and cortical oscillations dissociated, proving the existence of independent subcortical and cortical mechanisms. Subcortical oscillations maintained their high frequencies but became transient. Cortical oscillations were now dominated by a cortical synchronizing mechanism operating in the 30-60 Hz frequency range. When the cortical mechanism dominated, LGN responses could become phase-locked to the cortical oscillations via corticothalamic feedback. In summary, synchronization of cortical responses can result from two independent but interacting mechanisms. First, a transient feedforward synchronization to high-frequency retinal oscillations, and second, an intracortical mechanism, which operates in a lower frequency range and induces more sustained synchronization.  相似文献   

12.
Branching patterns of single corticospinal (CS) neurons were studied in the cat by activating these neurons antidromically from various regions of the spinal cord. 1. One hundred and ninety-three neurons were activated antidromically by microstimulation in the gray substance of the cervical cord and the majority of them were found in the forelimb area of the pericruciate cortex. 2. Branches to the lower levels of the spinal cord were found for 30% of the neurons projecting to the cervical gray matter. 3. The remaining 70% sent axons only to the cervical gray matter and some of them sent multiple branches to several segments in the cervical cord. 4. Only a few CS neurons located outside of the forelimb area could be activated from the cervical cord, but all of them also sent branches to the lower levels of the spinal cord. Neurons projecting to both the cervical cord and the lower levels were intermingled in the cortex with those projecting only to the cervical cord. 5. CS neurons activated from a given area of the cervical cord were often clustered together in a small area of the cortex, although some of these CS neurons sent their other branches to other parts of the spinal cord and neurons projecting to other parts were also intermingled among them. 6. The functional significance of multiple axonal branching of CS neurons is discussed in relation to cortical motor functions.  相似文献   

13.
In order to determine the ongoing role of retinal fibers in the development of dorsal lateral geniculate nucleus (dLGN) neurons during postnatal development, the development of dLGN neurons in the postnatal absence of retinal input was studied in pigmented ferrets using the Golgi-Hortega technique. The development of four dLGN cell classes, defined on the basis of somatic and dendritic morphology, was described previously in normal ferrets (Sutton and Brunso-Bechtold, 1991, J. Comp. Neurol. 309:71-85). The present results indicate that the morphological development of dLGN neurons is strikingly similar in normal and experimental ferrets. The exuberant dendritic appendages that appear after eye opening in normal ferrets are overproduced and eliminated in the postnatal absence of retinal input; however, the final reduction of these transient appendages is delayed. Because exuberant appendages develop in the absence of retinal input, their production cannot depend upon visual experience. Differences in cell body size between normal and experimental ferrets are apparent only after neurons can be classified at the end of the first postnatal month. Cell body size is markedly reduced for class 1 neurons; class 2 cells also are reduced in size but to a far lesser extent. As there is a general trend for class 1 neurons to have the functional properties of Y-cells, it is likely that the dLGN neurons most affected by the absence of retinal input also are Y-cells.  相似文献   

14.
This research determined whether fear-conditioned, acoustic stimuli induce thalamic arousal reflected in associative responses in dorsal lateral geniculate nucleus (dLGN) neurons. Rabbits received a Pavlovian discriminative fear conditioning procedure in which one tone conditioned stimulus (CS+) was always paired with an aversive unconditioned stimulus (UCS) and another tone (CS–) was never paired with the UCS. Responses of single dLGN neurons to random CS+ and CS– presentations were then recorded. Nine of 15 recorded neurons demonstrated significantly greater firing during the CS+ versus the CS–. Their spontaneous activity demonstrated tonic firing during increased neocortical arousal and burst firing during decreased neocortical arousal. The results demonstrate that dLGN neurons show associative responses to fear-conditioned, acoustic stimuli and present a model for investigating the neural circuits by which such stimuli affect sensory processing at the thalamic level. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
1. The spike activity of 155 cells of the dorsal geniculate body of rats was recorded under the influence of flash and the combination of flash with a tone. For test animals the tone has an emotional relevance (ERT), because they had been trained to learn a conditioned emotional reaction with the tone as conditioned stimulus. Controls had been sham trained, i.e. the tone was never reinforced and therefore without emotional relevance (EIT). 2. In the controls there was no difference in the quantity of facilitatory and inhibitory responses to the tone, whereas under ERT there were more often facilitations than inhibitions. 3. The tone changed the reaction to flash. This variation depends on the emotional relevance of the acoustic stimulus. The ERT evoked a stronger increase in the number of excitations than the EIT. The number of inhibitions decreased equally under both conditions. Also, the ERT changed the strength of the flash response more often than the EIT did. An increasing trend of excitation was found especially in primary positive cells, an increasing trend of inhibition especially in primary negative ones. The time course of responses shows these differences to occur in the primary positive cells essentially later than 200 mse cafter the stimulus, in the primary negative cells, however, within this interval.  相似文献   

16.
To reveal contributions of different subdivisions of the lateral geniculate nucleus (LGN) to visuomotor behavior, segments of either layer A or the C layers were inactivated with microinjections of gamma-aminobutyric acid while cats made saccades to retinally stabilized spots of light placed either in affected regions of visual space or mirror-symmetric locations in the opposite hemifield. Inactivating layer A reduced the success rate for saccades to targets presented in affected locations from 82.4 to 26.8% while having no effect on saccades to the control hemifield. Saccades to affected sites had reduced accuracy and longer initiation latency and tended to be hypometric. In contrast, inactivating C layers did not affect performance. Data from all conditions fell along the same saccade velocity/amplitude function ("main sequence"), suggesting that LGN inactivations cause localization deficits, but do not interfere with saccade dynamics. Cerebral cortex is the only target of the A layers, so behavioral decrements caused by inactivating layer A must be related to changes in cortical activity. Inactivating layer A substantially reduces the activity of large subsets of corticotectal cells in areas 17 and 18, whereas few corticotectal cells depend on C layers for visually driven activity. The parallels between these behavioral and electrophysiological data along with the central role of the superior colliculus in saccadic eye movements suggests that the corticotectal pathway is involved in both deficits and remaining capacities resulting from blockade of layer A.  相似文献   

17.
Recently Sillito et al. (Nature 1994;369:479-82) discovered correlations in the spike trains of a relatively distant pair of cat lateral geniculate nucleus cells when simultaneously stimulated by a drifting grating; no such correlation occurs when the visual cortex is removed. In a further analysis of the data, we have found that short, high-frequency bursts contribute substantially to the synchronization and we hypothesize that the origin of the bursts is the low-threshold calcium spike. Guided by this hypothesis, our model of the corticogeniculate pathway and early visual system reproduces the experimental data in nearly every detail, as well as making predictions about cortical activity during the synchronizing process. We also discuss the possible behavioral relevance of correlations in the geniculo-cortical loop as well as other neural systems.  相似文献   

18.
The object of this study was to identify the terminal distributions of thalamocortical axons arising in chemically characterized subdivisions of the medial geniculate complex. Large injections of wheat germ agglutinin-conjugated horseradish peroxidase or small injections of Phaseolus vulgaris leucoagglutinin were made in the medial geniculate complex of Macaca fuscata. The terminal distributions of labeled axons in the cortex were correlated with auditory cortical fields demonstrable by different intensities of immunoreactivity for parvalbumin. Fibers from the ventral nucleus terminated mainly in layer IV and deep portion of layer III (IIIB), with additional terminations in layers I-IIIA and in layer VI. In layers IIIB-IV, a major terminal plexus was formed by a small number of dense patches, 300-500 microns in diameter, surrounded by smaller satellite patches. The patches conformed to a similarly lobulated pattern of parvalbumin fiber immunoreactivity. Terminations of some individually labeled thalamocortical fibers were restricted to a single patch, whereas others innervated more than one patch by collateral branches. Fibers from the dorsal nuclei ending in areas of less dense parvalbumin immunoreactivity surrounding the primary auditory cortex formed much larger terminal patches centered largely in layer IIIB. Fibers from the magnocellular nucleus had relatively few terminal branches but innervated extremely wide areas by collaterals of single axons. Two types of axons arose from the magnocellular nucleus, one terminating preferentially in middle cortical layers and the other exclusively in layer I. These may arise respectively from parvalbumin- and calbindin-immunoreactive cell populations in the magnocellular nucleus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号