首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co(Ni)MoS/Al2O3 catalysts have been prepared from ammonium 10-dodecamolybdodicobaltate (NH4)6[Co2Mo10O38H4] (further, Co2Mo10HPC) and cobalt(nickel) salts of 10-dodecamolybdodicobaltic acid H6[Co2Mo10O38H4] (hereinafter, Co2Mo10HPA). It has been found that a high activity of the Co(Ni)3-Co2Mo10HPA/Al2O3 catalysts in the hydrodesulfurization and hydrogenation reactions is due to the formation of a nanostructured type II CoMoS phase via the contact of the metals (Mo and Co(Ni)) at the molecular level. The use of Ni as a copromoter in the Ni3-Co2Mo10HPA/Al2O3 catalyst leads to a simultaneous increase, compared with Co3-Co2Mo10HPA/Al2O3, in the linear size of nanoparticles and the number of MoS2 layers in the packing of active phase. The nature of the promoter X has a substantial effect on the properties of X3Co2Mo10HPC/Al2O3 catalysts. It has been found that the catalysts with X = Co exhibit the highest activity in the hydrodesulfurization reactions and those with X = Ni, in hydrogenation reactions.  相似文献   

2.
 对采用分步浸渍法制备的 NiO-MoO3/γ-Al2O3氧化态前驱物进行了硫化、程序升温碳化(TPC)、TPC 后再硫化等处理,并进行了 XRD、XPS 表征;将所得的硫化物、碳氧化物和硫化的碳氧化物催化剂进行了二苯并噻吩的加氢脱硫(HDS)活性评价,并与一种现有的工业催化剂进行了比较。结果表明,对碳氧化物催化剂的硫化处理可以促进碳氧化物催化剂的活性稳定性;这种促进作用源于硫化时部分L酸位向B酸位的转变,所导致的金属的C、S活性物相在临氢时既具有较高的活性位密度和B酸位数目,又保持了一定程度的碳氧化物所具有的加氢活性。  相似文献   

3.
Carbon nanotubes have been successfully synthesized using the catalytic chemical vapor deposition (CCVD) technique over typical refining hydrotreating catalysts (hydrodesulfurization and hydrodenitrogenation) containing Ni–Mo and Co–Mo supported on Al2O3 catalysts at 700°C in a fixed bed horizontal reactor using natural gas as a carbon source. The catalysts and the as-grown CNTs were characterized by transmission electron microscopy, HRTEM, X-ray diffraction patterns, EDX and TGA–DTG. The obtained data clarified that the Ni–Mo catalyst gives higher yield, higher purity and selectivity for CNTs compared to Co–Mo catalyst. XRD, TEM and TGA reveal also that the Ni–Mo catalyst produces mostly CNTs with different diameters whereas the Co–Mo catalyst produces largely amorphous carbon.  相似文献   

4.
Nickel–molybdenum sulfide catalysts for the hydrogenation of aromatic hydrocarbons have been prepared by the in situ decomposition of oil-soluble precursors Mo(CO)6 and Ni(С7H15СOO)2 in a hydrocarbon feedstock and characterized by HRTEM and XPS. The resulting Ni–Mo sulfide material exhibits high catalytic activity in the naphthalene hydrogenation reaction. An optimum Mo/Ni ratio of 1/2 has been selected.  相似文献   

5.
Three samples of γ-Al2O3 with different textural characteristics have been synthesized from AlOOH powders (Sasol). Ni(Co)Mo/Al2O3 catalysts have been prepared by single impregnation of the γ-Al2O3 samples with solutions of active ingredients. The morphology of the active phase of the sulfided samples has been studied by high-resolution transmission electron microscopy. The catalytic activity has been measured with the use of vacuum gas oil (VGO) as a feedstock at temperatures of 360, 390 and 420°C. After catalytic activity measurements, the catalysts have been investigated by means of differential thermal and thermographic analysis (DTA-TGA). Textural characteristics of the catalysts in the oxide and sulfide forms have been determined, including those after the measurement of activity in VGO hydrotreating. The textural characteristics of the samples have been shown to correlate with the extent of the hydrogenation reactions of aromatic hydrocarbons and hydrodesulfurization. The highest hydrogenating and hydrodesulfurizing activity has been displayed by the sample on the support with the largest specific surface area and the smallest effective pore radius.  相似文献   

6.
含钴 WP/MCM-41催化剂二苯并噻吩氢脱硫性能   总被引:1,自引:0,他引:1  
 制备了不同 Co 含量的 WP/MCM-41催化剂,并采用X-射线衍射(XRD)、BET 比表面积以及 X-光电子能谱(XPS)等分析手段对催化剂进行了表征,采用微反装置对该催化剂二苯并噻吩(DBT)加氢脱硫(HDS)性能进行了评价。结果表明,WP 是催化剂的主要活性相,Co 的加入不同程度地促进了 WP 晶相生长,同时在催化剂表面形成了具有一定活性的类似 Co—W—P 结构的双金属磷化物。Co 对 WP/MCM-41催化剂的 DBT HDS 反应有促进作用,催化剂中活性位数量以及主要活性相 WP 在催化剂表面所占比例是决定催化剂活性的主要因素。其中,Co 质量分数为9%的催化剂(Cat-Co-9)具有相对最高 DBT HDS 活性,其 DBT 脱硫率和转化率分别为63.7%和60.4%,比未加 Co 的催化剂分别提高13.2%和13.7%。DBT 在 WP/MCM-41催化剂上以加氢脱硫(HYD)路径为主,Co 的加入对 HYD 路径起到促进作用,但随着 Co 加入量的提高,其 HYD 路径产物选择性逐渐降低,而直接脱硫(DDS)路径产物选择性不断提高。  相似文献   

7.
Abstract

Mesoporous MCM-41 material with high surface area and narrow pore size distribution was synthesized and used as a support for Mo, CoMo, and NiMo catalysts. The molybdenum loading was varied from 2–14 wt% on MCM-41. On 10 wt% Mo/MCM-41, the promoter Co or Ni concentration was varied from 1–5 wt%. All the catalyst samples were characterized by surface area, low temperature oxygen chemisorption, x-ray diffraction (XRD), and temperature programmed reduction methods. Characterization results show that Mo is well dispersed on MCM-41 up to 10 wt%. The catalytic activities were evaluated for thiophene hydrodesulphurization (HDS), cyclohexene hydrogenation (HYD), and furan hydrodeoxygenation (HDO). All three catalytic functionalities vary in a similar manner to that of oxygen chemisorption as a function of Mo loading, indicating that there is a correlation between oxygen uptake and catalytic sites. The activities of these catalysts were compared with γ-Al2O3- and amorphous SiO2-supported catalysts. It was found that MCM-41-supported Mo catalysts displayed superior activities.  相似文献   

8.
CoMo/MeO x (S y )/Al2O3 catalysts have been synthesized on supports modified with oxides (sulfides) of transition metals (Co, Ni, Mn, and Zn) using decamolybdodicobaltic heteropoly acid H6[Co2Mo10O38H4]. A correlation between the activity of the catalysts and the ability of transition metal sulfides to accumulate molecular hydrogen has been found in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and in the hydrotreating of the diesel fraction. It has been shown that the presence on the surface of Al2O3 of sulfides (NiS x , CoS x ) capable of activating hydrogen has a positive effect on the activity of the supported catalysts. It has been found that the hydrogen spillover effect, which was studied in a range of 300–350°C, contributes to an increase in the hydrogenating function of the catalyst systems.  相似文献   

9.
合成了一系列不同Ni、W比例的复合金属氧化物,并以此为前躯体制备高金属含量Ni-W催化剂,以萘、喹啉和二苯并噻吩为模型化合物进行了竞争性加氢脱芳烃、加氢脱氮及加氢脱硫反应研究;采用XRD、N2吸脱附、SEM、HRTEM等手段对Ni-W复合氧化物及高金属含量Ni-W催化剂进行了表征。结果表明:Ni-W复合氧化物为一系列具有NiWO4和WO3?0.75H2O晶相的介孔物质,硫化态高金属含量Ni-W催化剂中WS2的堆垛层数为2~6层,片层长度集中在3~10 nm范围内;高金属含量Ni-W催化剂作用下的喹啉及二苯并噻吩转化率均达到90%以上,但萘的转化率较低。  相似文献   

10.
以全硅MCM—41为载体制备W系深度加氢脱硫催化剂   总被引:12,自引:4,他引:8  
用全硅MCM-41担载Ni-W和Co-W制备了深度加氢脱硫催化剂,并在中压固定床反应器上分别考察了对二苯并噻吩(DBT)和高硫直接馏柴油的加氢脱硫性能。结果表明,全硅MCM-41担载制成的W系催化剂表现出很高的加氢脱硫活性,其中Ni-W/MCM-41活性高于Co-W/MCM-41,但两类催化剂的最佳Ni(Co)/W原子比均为0.75。从加氢脱硫产物分布看,两类催化剂的脱硫反应路径不同,在Co-W/MCM-41上主要通过氢解脱硫,而在Ni-W/MCM-41上则是通过氢解以及先经芳环加氢后脱硫的两条路径来进行,对Ni-MCM-41来说,加氢活性随温度升高而升高。  相似文献   

11.
 采用等体积浸渍法分别制备了Ni/SiO2和含TiO2的Ni/SiO2催化剂,采用XRD、TPR、XPS、N2吸附-脱附技术对催化剂进行了表征,并将催化剂应用于顺酐液相加氢制γ-丁内酯反应中,考察了Ni含量、TiO2添加量、催化剂还原温度对催化剂活性的影响。结果表明,Ni/SiO2催化剂对顺酐液相加氢制γ-丁内酯反应具有很高的催化活性, γ-丁内酯选择性很高;Ni/SiO2添加微量助剂TiO2,可以提高该反应的γ-丁内酯选择性。推测可能是由于TiO2促进了催化剂的还原,产生更多的活性中心,并且在400℃还原时,Ni和TiO2之间产生了强金属-载体相互作用(SMSI效应),TiO2富集到Ni的表面,将电子转移到Ni上,产生了更多有利于吸附羰基的活性中心,从而提高了γ-丁内酯选择性。  相似文献   

12.
Nickel–tungsten sulfide catalysts for the hydrogenation and hydrodesulfurization of aromatic hydrocarbons are synthesized by the in situ decomposition of thio salts using different methods: the in situ decomposition of a [BMPip]2Ni(WS4)2 precursor in an ionic liquid, the in situ decomposition of a [BMPip]2Ni(WS4)2 precursor in a hydrocarbon feedstock, the in situ breaking of a SPAN-80 surfactant-stabilized suspension of solid Ni/(NH4)2WS4 precursor particles in a hydrocarbon feedstock, and the decomposition of oil-soluble precursors (tungsten hexacarbonyl and nickel(II) 2-ethylhexanoate) in a hydrocarbon feedstock. The resulting catalysts are characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy; their catalytic activity is studied in a batch reactor using the example of the hydrofining of light cycle oils with different compositions.  相似文献   

13.
 以介孔分子筛SBA-15为载体,硝酸镍为镍源,磷酸氢二铵为磷源,采用共浸渍法制备了 P/Ni 摩尔比为0.8的 Ni2P/SBA-15催化剂,然后添加 Li、Na、K、Mg、Ca、Sr 和 Ba 等金属助剂,制备了一系列不同金属助剂的M-Ni2P/SBA-15(其中M为 Li、Na、K、Mg、Ca、Sr 和 Ba)催化剂。采用 XRD 对该系列催化剂的结构进行了表征,并以二苯并噻吩质量分数为1%的二苯并噻吩/十氢萘溶液为模型化合物,在微型固定床反应器上评价它们的加氢脱硫(HDS)性能。结果表明,M-Ni2P/SBA-15催化剂的活性相为 Ni2P。不同的金属助剂对催化剂性能的促进作用不同,其中碱土金属Ca能够明显地提高 Ni2P/SBA-15催化剂的 HDS 活性,Ca 质量分数为3.5%的Ca-Ni2P/SBA-15催化剂的 HDS 活性最好。在反应压力3.0 MPa、反应温度360℃的条件下,3.5%Ca-Ni2P/SBA-15催化剂催化的二苯并噻吩 HDS 的转化率达到98.6%。不同金属助剂以不同方式影响加氢脱硫反应的机理。    相似文献   

14.
The hydrogenation of a mixture of naphthalene, tetralin, and toluene (a solution in n-heptane) in the presence of dibenzothiophene (150 and 400 ppm on a sulfur basis) over Pt-Pd catalysts containing Al-HMS mesoporous aluminosilicates has been studied. The catalyst supports contained 35 wt % Al-HMS and 65 wt % γ-Al2O3. The Pt and Pd loadings in the catalysts were 0.2 and 0.8 wt %, respectively. The process was carried out at 200–240°C, a pressure of 30 atm, and a weight hourly space velocity of 1.7 h?1. It has been found that the catalyst based on Al-HMS with Si/Al = 10 exhibits the highest activity. Thus, in the hydrogenation of a model mixture containing 150 and 400 ppm of sulfur, the conversion of toluene at 240°C was 22.2 and 10.9 wt %, respectively. In the presence of this catalyst, the concentration of aromatic hydrocarbons in the hydrotreated diesel fraction decreased from 28.4 to 6.8 wt %, and the sulfur content decreased from 45 to 5 ppm.  相似文献   

15.
A method for synthesizing unsupported nickel–tungsten sulfide hydrodearomatization catalysts by breaking SPAN-80 surfactant-stabilized nonaqueous emulsions of solutions of different precursors in dimethyl sulfoxide (DMSO) in situ in a hydrocarbon medium has been first studied using ammonium thiotungstate (NH4)2WS4 and 1-butyl-1-methylpiperidinium nickel thiotungstate [BMPip]2Ni[WS4]2 as precursors and nickel nitrate hexahydrate as a nickel source. The synthesized nickel–tungsten catalysts have been characterized by TEM and XPS. The catalytic activity of the in situ synthesized Ni–W particles in naphthalene hydrogenation has been studied at temperatures of 350–400°C and a hydrogen pressure of 5.0 MPa.  相似文献   

16.
 以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛 SBA-15为载体,采用共浸渍法制备Ni2P/SBA-15前驱体,再将一定量的偏钨酸铵水溶液引入,采用程序升温还原制备了一系列 W-Ni2P/SBA-15催化剂。采用 XRD、N2吸附-脱附、NH3-TPD 和 XPS 表征了催化剂的结构,并评价了催化剂的二苯并噻吩加氢脱硫活性。结果表明,W-Ni2P/SBA-15催化剂中均只存在Ni2P物相;催化剂的比表面积和孔体积随着W含量的增加先增大后减小;强酸量和总酸量都随W含量的增加有明显增加;W的加入使得催化剂表面的 Niδ+含量有所降低,而 Pδ-含量有所增加;在大于360℃时,催化剂对二苯并噻吩具有很好的深度加氢脱硫活性,并且以直接脱硫生成联苯的脱硫机理为主。  相似文献   

17.
Nickel–molybdenum sulfide catalysts have been synthesized in situ in a hydrocarbon medium by the decomposition of the [(n-Bu)4N]2Ni(MoS4)2 precursor complex supported on an ordered mesoporous phenol–formaldehyde polymer in the presence of a sulfiding agent (dimethyl disulfide). The catalytic properties of the samples have been studied in a batch reactor at 380°C and a hydrogen pressure of 5.0 MPa using the example of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. The tests have shown that the conversion of biaromatic substrates is close to quantitative and the use of dimethyl disulfide as a sulfiding agent leads to an increase in the amount of complete hydrogenation products, as evidenced by the high content of the active phase in this case.  相似文献   

18.
将ZSM-5溶于偏硅酸钠水溶液,以十六烷基三甲基溴化铵作模板剂,用水热合成法自组装合成了具有较强酸性和不同SiO2/Al2O3摩尔比(n(SiO2)/n(Al2O3))的ZSM-5/MCM-41介孔硅铝分子筛(记为ZM(x),x=n(SiO2)/n(Al2O3))。以二苯并噻吩(DBT)质量分数为0.8%的十氢萘溶液为模型化合物,考察了Si-MCM-41和ZM(x)担载的Pd和Pt催化剂催化加氢脱硫(HDS)反应的活性。结果表明,担载Pt和Pd不会破坏ZM(x)的介孔结构;DBT在Pd催化剂上主要通过加氢路径脱硫,而在Pt催化剂上则直接脱硫和加氢2条反应路径并重;Si-MCM-41为载体的催化剂HDS活性较低并且失活较快,以ZM(x)为载体的Pd和Pt催化剂加氢活性、加氢脱硫活性、加氢裂化活性及稳定性都有显著提高;ZM(x)担载的Pt和Pd催化剂催化HDS反应的活性可能与其活性组分分散度以及载体的B酸和L酸比例(B/L)有关,具有较好的活性组分分散度和较高B/L比例的ZM(60)担载的Pd和Pt催化剂表现出最佳的加氢脱硫活性和稳定性。  相似文献   

19.
Oil-soluble bimetallic Ni-Mo sulfide nanoparticles(NiMoS) with narrow size distribution were successfully synthesized through a composite-surfactants-assisted-solvothermal process.The surface functionality and lipophilicity of the Ni-Mo sulfides were shown by transmission electronic microscopy,Fourier transform infrared and ultraviolet spectroscopy.The as-prepared Ni-Mo sulfides supported on activated carbon(NiMoS/AC) exhibited enhanced catalytic activity towards naphthalene hydrogenation instead of cracking.For comparison,CoMoS/AC and MoS2/AC catalysts were also prepared through similar procedures,and it was found that their catalytic performance decreased in the order of NiMoS/AC〉CoMoS/AC〉MoS2/AC.Furthermore,the activity of the bimetallic NiMoS nanocatalyst can be effectively tuned via variation of the atomic ratio of Ni/(Ni+Mo).  相似文献   

20.
Mono- and bimetallic Mo(W)S2 catalysts supported on γ-Al2O3 and SBA-15 have been prepared using the Keggin heteropoly acids (HPAs) H4SiMo12O40 and H4SiW12O40. The catalyst samples have been analyzed by temperature-programmed reduction with hydrogen, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Catalytic properties have been examined in the joint hydrotreating of dibenzothiophene and naphthalene on a flow-through unit. It has been shown that the use of mesoporous silica SBA-15 as a support can reduce the average length of Mo(W)S2 particles from 4.9 to 3.7 nm and increase the average number of layers and the particle size of the active phase, changes that lead to an increase in catalytic activity by a factor of ~3 relative to the alumina-supported counterparts. The use of a mixture of SiMo12HPA and SiW12HPA for preparing MoW catalysts leads to a significant enhancement of catalytic activity, which is apparently due to the formation of mixed active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号