首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Advanced Robotics》2013,27(5):463-478
This paper describes the theory and an experiment of a velocity potential approach to path planning and avoiding moving obstacles for an autonomous mobile robot by use of the Laplace potential. This new navigation function for path planning is feasible for guiding a mobile robot avoiding arbitrarily moving obstacles and reaching the goal in real time. The essential feature of the navigation function comes from the introduction of fluid flow dynamics into the path planning. The experiment is conducted to verify the effectiveness of the navigation function for obstacle avoidance in a real world. Two examples of the experiment are presented; first, the avoidance of a moving obstacle in parallel line-bounded space, and second, the avoidance of one moving obstacle and another standing obstacle. The robot can reach the goal after successfully avoiding the obstacles in these cases.  相似文献   

2.
Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.  相似文献   

3.
A reactive navigation system for an autonomous mobile robot in unstructured dynamic environments is presented. The motion of moving obstacles is estimated for robot motion planning and obstacle avoidance. A multisensor-based obstacle predictor is utilized to obtain obstacle-motion information. Sensory data from a CCD camera and multiple ultrasonic range finders are combined to predict obstacle positions at the next sampling instant. A neural network, which is trained off-line, provides the desired prediction on-line in real time. The predicted obstacle configuration is employed by the proposed virtual force based navigation method to prevent collision with moving obstacles. Simulation results are presented to verify the effectiveness of the proposed navigation system in an environment with multiple mobile robots or moving objects. This system was implemented and tested on an experimental mobile robot at our laboratory. Navigation results in real environment are presented and analyzed.  相似文献   

4.
This paper presents a novel reactive collision avoidance method for mobile robots moving in dense and cluttered environments. The proposed method, entitled Tangential Gap flow (TGF), simplifies the navigation problem using a divide and conquer strategy inspired by the well-known Nearness-Diagram Navigation (ND) techniques. At each control cycle, the TGF extracts free openings surrounding the robot and identifies the suitable heading which makes the best progress towards the goal. This heading is then adjusted to avoid the risk of collision with nearby obstacles based on two concepts namely, tangential and gap flow navigation. The tangential navigation steers the robot parallel to the boundary of the closest obstacle while still emphasizing the progress towards the goal. The gap flow navigation safely and smoothly drives the robot towards the free area in between obstacles that lead to the target. The resultant trajectory is faster, shorter and less-oscillatory when compared to the ND methods. Furthermore, identifying the avoidance maneuver is extended to consider all nearby obstacle points and generate an avoidance rule applicable for all obstacle configurations. Consequently, a smoother yet much more stable behavior is achieved. The stability of the motion controller, that guides the robot towards the desired goal, is proved in the Lyapunov sense. Experimental results including a performance evaluation in very dense and complex environments demonstrate the power of the proposed approach. Additionally, a discussion and comparison with existing Nearness-Diagram Navigation variants is presented.  相似文献   

5.
《Advanced Robotics》2013,27(5-6):555-581
In this paper we introduce a new family of navigation functions for robot navigation and obstacle avoidance. The method can be used for both path finding and real-time path planning. Each navigation function is composed of three parts: a proportionality term, a deviation function and a deviation constant. Deviation functions are time-varying functions satisfying certain conditions. These functions and parameters are updated in real-time to avoid collision with obstacles. Our strategy uses polar kinematics equations to model the navigation problem in terms of the range and direction between the robot and the goal. The obstacles are mapped to polar planes, and represented by the range and the direction from the robot or the final goal in polar coordinates. This representation gives a certain weight to the obstacles based on their relative position from the robot and facilitates the design of the navigation law. There exists an infinite number of navigation functions obtained by changing the proportionality constant, the deviation constant or the deviation function. This offers an infinite number of possibilities for the robot's path. Our navigation strategy is illustrated using an extensive simulation where different navigation parameters are used.  相似文献   

6.
针对在单一学习机制中,移动机器人自主导航一般只适用于静态场景,适应性差的问题,提出一种动态场景自适应导航方法.该方法通过激光测距仪(LRF)获取周围环境的距离信息,在基于增量判别回归(IHDR)算法的单一学习机制导航的基础上,提出了最远距离优先机制的局部避障环节.该导航方法克服了传统导航方法对环境模型的过度依赖,并且本文提出的基于最远距离优先机制的局部避障算法,解决了基于单一学习机制的导航方法对动态场景适应能力不足的问题.本文将动态场景自适应导航方法应用到了MT-R机器人中,与基于单一学习机制的导航方法进行了对比实验,并且运用提出的局部避障算法,对实验中的激光数据进行了算法性能分析.实验结果证实了该方法的可行性,并显示了该方法在动态场景下的良好表现.  相似文献   

7.
Different from ordinary mobile robots used in a well-structured industrial workspace, a guide mobile robot for the visually impaired should be designed in consideration of multiple moving obstacles of various types and with different speeds while it adaptively maintains a certain distance from the user. Here, the moving obstacles mostly refer to pedestrians in intentional motions. Thus, navigation of the guide robot can be facilitated if the intention of each obstacle detected can be known in advance.In the paper, we propose to use a fuzzy grid-type local map in order to infer the intention of a moving obstacle. And, then, we determine the motion control of the robot by adopting a multiobjective decision making method in order to take into consideration various requirements including goal-seeking, multiple obstacle avoidance and maintenance of a certain distance from the user. To show the effectiveness of the proposed method, some experimental results are provided.  相似文献   

8.
Learning sensor-based navigation of a real mobile robot in unknownworlds   总被引:1,自引:0,他引:1  
In this paper, we address the problem of navigating an autonomous mobile robot in an unknown indoor environment. The parti-game multiresolution learning approach is applied for simultaneous and cooperative construction of a world model, and learning to navigate through an obstacle-free path from a starting position to a known goal region. The paper introduces a new approach, based on the application of the fuzzy ART neural architecture, for on-line map building from actual sensor data. This method is then integrated, as a complement, on the parti-game world model, allowing the system to make a more efficient use of collected sensor information. Then, a predictive on-line trajectory filtering method, is introduced in the learning approach. Instead of having a mechanical device moving to search the world, the idea is to have the system analyzing trajectories in a predictive mode, by taking advantage of the improved world model. The real robot will only move to try trajectories that have been predicted to be successful, allowing lower exploration costs. This results in an overall improved new method for goal-oriented navigation. It is assumed that the robot knows its own current world location-a simple dead-reckoning method is used for localization in our experiments. It is also assumed that the robot is able to perform sensor-based obstacle detection (not avoidance) and straight-line motions. Results of experiments with a real Nomad 200 mobile robot are presented, demonstrating the effectiveness of the discussed methods.  相似文献   

9.
针对现有移动机器人在视觉避障上存在的局限,将深度学习算法和路径规划技术相结合,提出了一种基于深层卷积神经网络和改进Bug算法的机器人避障方法;该方法采用多任务深度卷积神经网络提取道路图像特征,实现图像分类和语义分割任务;其次,基于语义分割结果构建栅格地图,并将图像分类结果与改进的Bug算法相结合,搜索出最优避障路径;同时,为降低冗余计算,设计了特征对比结构来对避免对重复计算的特征信息,保障机器人在实际应用中实时性;通过实验结果表明,所提方法有效的平衡了多视觉任务的精度与效率,并能准确规划出安全的避障路径,辅助机器人完成导航避障。  相似文献   

10.
In this paper, we propose a control law for navigating a robot along the boundary of an obstacle, using sampled line-of-sight obstacle distance data. By forming some assumptions about the shape of the obstacle, we generate constraints suitable for navigation using a model predictive control type approach. We show how a target point may be generated to facilitate the desired motion. The proposed method is suitable for vehicles with unicycle dynamics, and has the advantage of being able to vary the vehicles speed and following distance to adapt to the obstacle. We are able to show collision avoidance, complete transversal of the obstacle and finite completion time for transversing a finite boundary segment. Possible extensions to target convergence and moving obstacles are outlined. Simulations and experiments confirm the validity of the method.  相似文献   

11.
针对多移动机器人的编队控制问题,提出了一种结合Polar Histogram避障法的领航-跟随协调编队控制算法。该算法在领航-跟随l-φ编队控制结构的基础上引入虚拟跟随机器人,将编队控制转化为跟随机器人对虚拟跟随机器人的轨迹跟踪控制。结合移动机器人自身传感器技术,在简单甚至复杂的环境下为机器人提供相应的路径运动策略,实现实时导航的目的。以两轮差动Qbot移动机器人为研究对象,搭建半实物仿真平台,进行仿真实验。仿真结果表明:该方法可以有效地实现多移动机器人协调编队和避障控制。  相似文献   

12.
在动态环境中移动机器人导航和避碰的一种新方法   总被引:17,自引:0,他引:17  
袁曾任  高明 《机器人》2000,22(2):81-88
本文提出了基于超声传感器的信息,将改进的栅格 和回归预测法结合起来,应用于具有静态和动态障碍物的动态环境中,移动机器人THMR-Ⅱ 的导航和避碰的一种新方法.对栅格法的改进就是以障碍物为单位记录信息量,结果比原来 以栅格为单位记录的信息量少得多,克服了栅格法中存在环境信息存储量大的问题,提高了 实时性.对回归预测法也作了改进,并把它们结合起来,在求得最佳候选扇区后,使移动机 器人躲避了静态和动态障碍物,实现了导航,最终到达目标.通过三种仿真实验,结果表明 作者提出的方法是正确和有效的.  相似文献   

13.
Samir  Erika  Said  Lotfi  Marco   《Robotics and Autonomous Systems》2009,57(11):1083-1093
In this study, a path-planning method that has been developed for serial manipulators is adapted to cable-driven robots. The proposed method has two modes. The first one is active when the robot is far from an obstacle. In this mode, the robot moves toward the goal on a straight line. The second mode is active when the robot is near an obstacle. During this mode, the robot finds the best way to avoid the obstacle. Moreover, an algorithm is presented to detect the collision between the robot and the obstacle. A similar algorithm is also presented to avoid the collision of the cables with an obstacle. Some simulation results are shown, which are then validated experimentally using a built 4-cable-driven parallel manipulator. Although the path obtained between the initial and final poses may not be the shortest possible one, it guarantees finding a path, when it exists, no matter how cluttered the environment is.  相似文献   

14.

This paper presents a sensor-based real-time obstacle avoidance method for an autonomous omnidirectional mobile robot based on simultaneous control of translational and efficient rotational motion considering movable gaps and the footprint. Autonomous mobile service robots that have been developed in recent years have arms that work and execute tasks. Depending on the task using moving parts, the shape of the robot (i.e., the footprint) changes. In this study, to improve the safety and possibility of reaching a goal even through a narrow gap with unknown obstacles, a sensor-based real-time obstacle avoidance method with simultaneous control of translational and efficient rotational motion (without unnecessary rotational motion) based on the evaluation of movable gaps and the footprint is proposed. To take account of the anisotropy footprint of the robot, multiple-circle robot model is proposed. In this paper, a novel control method based on fuzzy set theory is presented. To verify the effectiveness of the proposed method, several simulations and experiments are carried out.

  相似文献   

15.
由于动态未知环境下自主移动机器人的导航具有较大困难,为实现自主机器人在动态未知环境下的无碰撞运行,文中将行为优先级控制与模糊逻辑控制相结合,提出4种基本行为控制策略:目标寻找、避障、跟踪和解锁.针对'U'型和'V'型障碍物运行解锁问题,提出了行走路径记忆方法,并通过构建虚拟墙来避免机器人再次走入此类区域.仿真实验表明,所提出的控制策略可有效地运用于复杂和未知环境下自主移动机器人的导航,且具有较好的鲁棒性和适应性.  相似文献   

16.
传统的机器人导航系统在复杂的地形环境中常常无法引导机器人躲避突然出现的障碍物,无法精准采集数据;为此提出一种改进RBPF算法的轮式机器人SLAM导航系统,对系统硬件和软件进行设计;改进RBPF算法是一种滤波算法,将激光雷达与里程计的信息作为提议分布,提高了导航精度;系统硬件主要由导航功能模块、底盘驱动模块、控制模块组成,利用RPLIDAR A1型激光雷达设计导航功能模块,并设计底盘驱动模块和控制模块;软件设计中,以改进RBPF算法为基础,设计了轮式机器人SLAM导航系统的实现程序,应用算法代入的方式加强了普通轮式机器人导航算法对粒子计算与卡尔曼滤波的敏感程度;实验结果表明,在有障碍物的室内场景中,与传统滤波算法以及基于软件库系统相比,改进RBPF算法规划的路径更短,导航错误点出现率降低了30%左右。  相似文献   

17.
Lingqi Zeng 《Advanced Robotics》2013,27(16):1841-1862
In many service applications, mobile robots need to share their work areas with obstacles. Avoiding moving obstacles with unpredictable direction changes, such as humans, is more challenging than avoiding moving obstacles whose motion can be predicted. Precise information on the future moving directions of humans is unobtainable for use in navigation algorithms. Furthermore, humans should be able to pursue their activities unhindered and without worrying about the robots around them. An enhanced virtual force field-based mobile robot navigation algorithm (termed EVFF) is presented for avoiding moving obstacles with unpredictable direction changes. This algorithm may be used with both holonomic and nonholonomic robots. It incorporates improved virtual force functions and an improved method for selecting the sense of the detour force to better avoid moving obstacles. For several challenging obstacle configurations, the EVFF algorithm is compared with five state-of-the-art navigation algorithms for moving obstacles. The navigation system with the new algorithm generated collision-free paths consistently. Methods for solving local minima conditions are proposed. Experimental results are also presented to further verify the avoidance performance of this algorithm.  相似文献   

18.
移动机器人的自动能力中实时避障和导航是一个很关键的技术,研究的主要问题是:机器人在运动时需要充分的环境信息,而且处理这些信息的速度要快,同时也要满足实时性的要求。文章介绍了将Bayes经典推理理论应用于机器人对未知环境的探索、感知过程,确定了具体的实验方案和实现步骤,完成了一个简化的仿真算例,并通过仿真结果对该方法的有效性和性能进行了验证和评估。  相似文献   

19.
自主式微小型移动机器人的自动避障行为研究   总被引:2,自引:0,他引:2  
李小海  程君实  陈佳品 《机器人》2001,23(3):234-237
针对多微小型移动机器人工作环境的模型未知或不确定,以及该机器人本身 的某些限制,采用基于行为的研究方法,实现了自行设计的自主式微小型移动机器人在未知 、动态环境中的自动避障,设计了该机器人的障碍物回避行为,采用了电机神经元网络选择 机器人的自动避障动作,并用增强式学习的动作评判结果在线修改网络的权值,结合机器人 的漫步行为,采用机器人的安全漫步任务验证了该方法的有效性.  相似文献   

20.
变磁力吸附爬壁机器人是一种具有快速、灵活移动方式的爬行机器人,但其吸附力难以控制,越障稳定性较差,难以保证机器人的平稳爬行;为实现爬壁机器人在大型建筑结构外表面的自主避障,提升机器人与运动平面之间的吸附紧密性,设计基于Netvlad神经网络的变磁力吸附爬壁机器人控制系统;按照PCB控制要求,连接外置SRAM设备与传感器模块,借助驱动I/O口电路提供的电力驱动作用,控制气动阀门的闭合情况,完成变磁力吸附爬壁机器人控制系统硬件结构设计;建立Netvlad神经网络体系,通过划分控制指令程序任务的方式,确定移植参数取值范围,实现对控制协议的移植处理,联合相关硬件应用结构,完成基于Netvlad神经网络的变磁力吸附爬壁机器人控制系统设计;实验结果表明,在所设计系统作用下,障碍物所在位置与爬壁机器人所在位置之间的实测距离未大于30cm,能够有效实现自主避障,保证机器人与运动平面之间的紧密吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号