首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用机械合金化(MA)方法制备了MgNix(x=0.5,1.0,1.25,1.5,2.0)二元贮氢合金。并详细研究了含Ni量对MAMg-Ni系二元合金结构和电化学性能的影响。结果表明,当x=0.5时,MAMgNi0.5仍为晶态合金。 形成非晶态结构,且放电容量很低;当x=1.0~2.0时,MA Mg-Ni二元合金可形成非晶相,且非昌Mg-Ni二 合金具有较高的室温放电容量。, 时,在非 组成范围内  相似文献   

2.
电极制备工艺对储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
通过合金电极电化学容量与粘结剂的类型、导电剂的用量、电极粉末颗粒尺寸的关系,讨论了制极制备工艺对储氢合金M1(NiCoSiMnAl)5电化学性能的影响。结果表明:选择6%-9%的PVA溶液作为粘结剂,合金电极可获得满意的充放电性能;采用粒度范围较宽的合金粉制作电极,有利于增加合金粉末的填充密度,提高储氢合金的利用率;导电剂用量对电极性能的影响显著。  相似文献   

3.
V对贮氢合金微观结构和电化学性能的影响   总被引:3,自引:0,他引:3  
为了开发AB5型稀土系低Co贮氢合金,研究了加V低Co贮氢合金M/Ni3.55Co0.3Mn0.4Al0.25Cu0.15Fe0.1Cr0.1Zn0.13Vx(x=0.02,0.05,0.08)V含量变化对放电容量、循环稳定性的影响机理。结果表明,加V低钴贮氢合金可以获得良好的综合电化学性能,但V的加入应严格控制。在本研究范围内,x=0.02的加V低钴贮氢合金具有最佳的综合电化学性能。  相似文献   

4.
Intermetallic compound TiFe has been apromising candidate fOr hydrogen storage sinceReilly and Wiswa1l fOund its hydrogen absorp-tion capacity[l ]. However, due to its poor acti-vation characteristics, its large-scaIe commer-cia1 use is very hard. For binary TFe, high-temperature heat treatment is required to acti-vate TiFe specimens to absorb hydrogen atroom temperature. In this case, it may take aday or more and high pressure (5.0 MPa ormore) fOr complete activation[2].In the past year…  相似文献   

5.
液相法合成纳米二氧化钛   总被引:5,自引:2,他引:5  
在分别优化稀土A组元过渡族B组元基础上,研究了ABγ合金中化学计量比γ值对其电化学性能的影响。结果表明,超化学计量比(γ=5.3)的合金具有较高的放电容量(295mA.h/g)和较小的循环容量衰退(电化学容量在250次循环后为83.6%)但其大电流放电能力有所降低,经XRD分析,γ=5.3的合金具有最大的晶胞体积,从放电容和循环寿命来看,超化学计量比合金优于化学计量比合金和欠化学计量比合金,但其高  相似文献   

6.
Hydrogen Storage Properties of Co-free La-Mg-Ni-Based Alloys   总被引:2,自引:0,他引:2  
在Ar气保护下采用磁悬浮感应熔炼方法,制备无CoLa1.8Ti0.2MgNi9-xAlx(x=0,0.1,0.2,0.3,0.4)合金,系统研究Al取代Ni对合金的结构及贮氢性能的影响。所有合金均包含LaMg2Ni9相,当Al含量x≥0.1,La(Ni,Al)5相取代LaNi5相、LaNi3相消失、LaNi2相出现。测试合金的焓变值与LaNi5合金(–30.6kJ/molH2)相近。Al取代Ni不仅提高合金电极的放电容量,而且改善循环稳定性及电化学动力学性能。La1.8Ti0.2MgNi8.7Al0.3合金贮氢性能较好,30℃下有效吸氢质量分数为1.32%;最大放电容量达到340mAh/g;1400mA/g放电电流密度下高倍率放电性能HRD1400高达79.8%;经100次充放电循环放电容量保持率为60%。  相似文献   

7.
本文综述了熔炼法、机械合金化法、烧结法、扩散法、氢化燃烧合成法、表面处理法等制备Mg2Ni合金的基本原理和主要工艺。介绍了扩散法和球磨法等制备技术的联用,总结并讨论了这些合金制备技术制取的合金的充放氢性能和电化学性能及其对合金性能的影响。较先进的机械合金化法制备Mg2Ni系贮氢合金复合材料是比较理想的途径。  相似文献   

8.
贮氢合金机械合金化制备的研究进展   总被引:6,自引:0,他引:6  
机械合金化技术(MA)是一种制备材料的新兴工艺,用它可以制备一般方法难以制备的和性能优越的贮氢合金。本文详细概述了近几年来机械合金化技术在贮氢合金制备上的应用状况,并就今后机械合金化技术在贮氢合金制备上的应用研究提出了方向。  相似文献   

9.
为了改善Ti基储氢合金的电化学性能,采用Si元素部分替代Mn元素的方法,分析研究了Ti基储氢合金Ti03Zr0.225V0.25Mn0.25-xNi0.5Six的相结构及电化学性能。结果表明,合金均由六方结构的C14型Laves主相和立方结构的TiNi第二相构成;随着Si元素替代量x的增大,合金的活化性能降低,而循环稳定性得到很大程度的改善。  相似文献   

10.
镁基储氢合金的最新研究进展   总被引:2,自引:1,他引:1  
镁基合金是一类重要的储氢材料。本文综述了Mg2Ni系合金、稀土-镁-镍、镁-稀土等3类含镁储氢合金的最新研究进展,探讨了合金化机理,即合金化元素、原子半径、相结构对含镁基储氢合金性能的影响规律。  相似文献   

11.
La-Mg-Ni系AB3型贮氢电极合金的相结构与电化学性能   总被引:11,自引:0,他引:11  
XRDRietveld分析显示,LaxMg3-xNi9(x=1.0-2.3)均由六方PuNi3型结构的主相及少量LaNi5及MgNi2杂相组成,主相的晶胞参数随x的增加而线性增大.合金的氢化物仍保持PuNi3型结构,但其晶胞体积有较大的膨胀.电化学测试表明,随x增加,合金的最大放电容量由88.3(x=1.0)逐渐增大到397.5mA·h/g(x=2.0),然后又降低到230mA·h/g(x=2.3).对放电容量超过348mA·h/g的合金(x=1.7-2.2),在放电电流i=400-1200mA/g的条件下,合金的高倍率放电性能(HRD)均随x增加而有不同程度的降低.HRD的缓慢降低主要与合金电极进行电荷迁移反应时的电催化活性的逐渐降低有关,而在x>2.0时,HRD的快速降低与氢在合金中的扩散速率明显降低有关,上述合金经100次循环后合金的容量保持率为55.7%-62.9%,容量衰退较快与循环过程中La和Mg的氧化腐蚀以及合金较大的吸氢体积膨胀率有关.  相似文献   

12.
Fe的添加,提高了金属钒的活化性能和放氢平台压力,降低吸放氢容量.Fe含量<1%(原子分数,下同),对二氢化物并无明显影响,Fe含量>1%,二氢化物平台压明显升高,容量明显下降,氢化物的生成焓明显降低;Fe的添加对一氢化物并无明显的影响.随着Fe含量的增加,合金的晶格常数和晶胞体积呈线性趋势降低.  相似文献   

13.
系统研究了Co替代Ni对LaNi3.8型LaNi3.8-xCox(x=0.0,0.2,0.4,0.6)贮氢合金组织结构和电化学性能的影响。研究表明,所有合金都由LaNi5、Ce5Co19和Pr5Co19相组成。随着Co含量的增加,3个相的相丰度发生变化,而且单胞体积也相应的增加,这使得合金的放氢平台压降低到镍氢电池需要的范围(0.01~0.1 MPa)。与LaNi3.8相比,含Co合金的循环性能得到改善。LaNi3.4Co0.4具有最大的放电容量,这一点与固态放氢量一致。LaNi3.6Co0.2倍率放电性能最好,具有最大的交换电流密度(Io)和最小的电荷转移电阻(Rct)。  相似文献   

14.
用感应熔炼的方法制备了AB_3型La-Mg-Ni系稀土贮氰电极合金,采用X射线衍射、Sievert型测试仪、三电极测试体系研究了合金的相结构、吸氢性能、电化学性能.X射线衍射分析结果表明,AB_3型La-Mg-Ni系稀土贮氢电极合金均南(La,Mg)Ni,相、(La,Mg)_2Ni_7相及少量杂质相组成,为多相结构;贮氢性能实验研究表明,具有PuNi_3结构的LaNi_3,型合金的吸氧量高于具有CaCu_5结构的LaNi_5型合金.  相似文献   

15.
为改善Mg2Ni储氢合金电化学性能,采用机械合金化法(Mechanical Alloying,MA),分别制备出改性合金Mg1.8 Zr Ni以及MgTi3,按一定比例和Ni混合球磨,制备出纳米晶或非晶化的Mg1.8Zr0.2Ni- (1.2-x)Ni -xMgTi3复合储氢合金。研究结果表明,经部分取代改性和包覆修饰后的复合储氢合金,其表面和内部形成较多的纳米级褶皱、空隙层状和多相结构缺陷。随着MgTi3含量增加,Mg1.8Zr0.2Ni- (1.2-x)Ni -xMgTi3复合储氢合金初始放电比容量也逐渐增加,当MgTi3含量为x=0.5时,合金初始放电比容量为973.3 mAh.g-1。但MgTi3含量超过x=0.5时,其初始放电比容量又有所下降,研究表明添加MgTi3却不利于复合储氢合金的循环稳定性和高倍率放电性能。通过对Mg1.8Zr0.2Ni- (1.0-x)Ni -xMgTi3复合储氢合金进行线性极化、阳极极化和交流阻抗测试,进一步研究了系列合金电极的表面电化学反应、电荷转移过程、氢在合金中的扩散情况以及它们的电化学性能。  相似文献   

16.
采用机械球磨法制备Mg17Al12合金,系统研究了球磨时间对Mg17Al12形成过程的影响;并以球磨12 h的Mg17Al12合金为基体,添加5%、10%(质量分数)的Ni、Cu单质,通过机械球磨对合金进行表面复相改性。采用P-C-T测试仪测定合金的储氢性能,研究添加不同质量分数的单质对Mg17Al12合金储氢性能的影响。结果表明:球磨12 h Mg17Al12的吸氢速率较慢,吸氢时间较长,需在1400 min达到最大吸氢量为4.1%(质量分数),接近其理论吸氢量4.4%,Mg17Al12的吸放氢过程是可逆的。Cu对Mg17Al12进行表面复相改性,可以显著改善其吸氢动力学性能,添加5%Cu和10%Cu的合金在623 K,240 min的吸氢量分别为4.07%和3.9%。经过Cu和Ni复相改性后的Mg17Al12具有较好的放氢性能,添加5%Cu合金在553 K放出3%的氢气。Ni对Mg17Al12进行表面复相改性,对其性能有一定的提高,但是和Cu相比,并不明显  相似文献   

17.
采用磁悬浮感应熔炼及退火处理的方法,制备La1.9Ti0.1MgNi9合金。对合金样品的XRD、PCT和电化学测试表明,所有样品均由多相组成,LaNi5相为主相。当退火温度达到1173 K时,合金中LaMg2Ni9相消失,Ti2Ni相出现。退火处理能提高合金的晶化程度、降低吸放氢平台压。退火1073 K合金的有效吸氢量较高,在303 K时达到1.25% (质量分数)。La1.9Ti0.1MgNi9合金退火后,放电容量、循环稳定性以及高倍率放电性能得到极大改善,以1173 K退火合金电化学性能较好,其最大放电容量为377 mAh/g,1100 mA/g电流密度下的高倍率放电性能为0.839,经112次充放电循环后放电容量保持率为60%。  相似文献   

18.
汽车和战车中用钛的动向   总被引:9,自引:4,他引:9  
详细研究了通过机械合金化(MA)方法制备的Mg50Ni50-x-yMxNy(M,N=Al,Co和Si)系列非晶态贮氢合金的电化学特性。结果表明,该系列MA非晶合金的电化学活化容易,电化学容量高,其中Mg50Ni50合金的最大容量达500mA·h/g,约为晶态合金的10倍;但是它们的化学稳定性较差,容量的循环衰减速率达(10~60)mA·h/g·cycle。通过XRD分析,证实Mg-Ni基合金的性能衰退是由于其中的Mg在碱性溶液中被氧化所引起。  相似文献   

19.
Fe替代Co对AB5型贮氢合金电化学性能和相结构的影响   总被引:1,自引:1,他引:1  
研究了Fe替代C0对Mm(NiMnSiAl)4.3Co0.6-xFex(x=0,0.2,0.4,0.6)贮氢合金电化学性能和相结构的影响。研究结果表明:Fe替代Co使合金的放电容量降低,但使合金的循环稳定性得到改善;合金具有双相结构,主相为CaCu5型相,还有少量的第二相Ce2Ni7相,随着Fc替代量的增加,第二相没有明显变化,但合金的点阵常数和晶胞体积略有增加,这是Fe替代Co使合金循环稳定性得以改善的一个主要原因。  相似文献   

20.
Ni-MH电池负极材料AB5型稀土系贮氢合金中A、B两侧各元素变化直接影响其微观组织和电化学性能。综述近年来AB;型贮氢合金两侧元素替代的研究进展以及各种合金元素与电化学性能之间的关系,旨在为开发新型高性能贮氢合金提供合金化思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号