首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
李俊文  夏银水 《电子学报》2019,47(2):404-409
Majority门作为多数逻辑电路的基本逻辑单元,其性能直接影响整体电路的质量.使用量子元胞自动机(QCA)设计Majority门具有结构简单的优点.本文提出了一种三层电路实现五输入Majority门的设计,并以此设计了全加器,进一步应用于多位加法器和乘法器中,与已发表的电路设计比较表明,其版图使用面积和元胞数有明显的减少,加法器元胞数和面积改进最高可达43%和87.2%,乘法器元胞数和面积改进最高可达48.2%和100%.  相似文献   

2.
基于量子元胞自动机容错反相器的设计   总被引:1,自引:0,他引:1  
分析了由线、反相器、扇出、择多逻辑门等量子元胞自动机组成的基本电路在工艺制造过程中可能存在的故障,基于块择多逻辑门的冗余结构设计思想,设计出具有容错能力的量子元胞自动机反相器,最后利用QCADesigner软件对位于不同输入输出点的极化值进行了仿真研究和验证。结果表明,所设计的反相器结构对称,输入与输出方式多样性,对元胞位移故障和元胞缺陷故障具有较好的容错能力,这将对构成更复杂的大规模QCA集成电路容错的研究具有一定的借鉴意义。  相似文献   

3.
    
The emergence of Quantum-dot Cellular Automata (QCA) has resulted in being identified as a promising alternative to the currently prevailing techniques of very large scale integration. QCA can provide low-power nanocircuit with high device density. Keeping aside the profound acceptance of QCA, the challenge that it is facing can be quoted as susceptibility to high error rate. The work produced in this article aims towards the design of a reliable universal logic gate (r-ULG) in QCA (r-ULG along with the single clock zone and r-ULG-II along with multiple clock zones). The design would include hybrid orientation of cells that would realise majority and minority, functions and high fault tolerance simultaneously. The characterisation of the defective behaviour of r-ULGs under different kinds of cell deposition defects is investigated. The outcomes of the investigation provide an indication that the proposed r-ULG provides a fault tolerance of 75% under single clock zone and a fault tolerance of 100% under dual clock zones. The high functional aspects of r-ULGs in the implementation of different logic functions successfully under cell deposition defects are affirmed by the experimental results. The high-level logic around the multiplexer is synthesised, which helps to extend the design capability to the higher-level circuit synthesis.  相似文献   

4.
Quantum‐dot cellular automata (QCA) is one of the few alternative computing platforms that has the potential to be a promising technology because of higher speed, smaller size, and lower power consumption in comparison with CMOS technology. This letter proposes an optimized full comparator for implementation in QCA. The proposed design is compared with previous works in terms of complexity, area, and delay. In comparison with the best previous full comparator, our design has 64% and 85% improvement in cell count and area, respectively. Also, it is implemented with only one clock cycle. The obtained results show that our full comparator is more efficient in terms of cell count, complexity, area, and delay compared to the previous designs. Therefore, this structure can be simply used in designing QCA‐based circuits.  相似文献   

5.
Quantum-dot cellular automata is one of the candidate technologies used in Nano scale computer design and a promising replacement for conventional CMOS circuits in the near future. Since memory is one of the significant components of any digital system, designing a high speed and well-optimized QCA random access memory (RAM) is a remarkable subject. In this paper, a new robust five-input majority gate is first presented, which is appropriate for implementation of simple and efficient QCA circuits in single layer. By employing this structure, a novel RAM cell architecture with set and reset ability is proposed. This architecture has a simple and robust structure that helps achieving minimal area, as well as reduction in hardware requirements and clocking zone numbers. Functional correctness of the presented structures is proved by using QCADesigner tool. Simulation results confirm efficiency and usefulness of the proposed architectures vis-à-vis state-of-the-art.  相似文献   

6.
    
ABSTRACT

Quantum-dot cellular automata (QCA) is an emerging nanotechnology and a possible alternative solution to the limitation of complementary metal oxide semiconductor (CMOS) technology. One of the most attractive fields in QCA is the implementation of configurable digital systems. This article presents a novel multifunctional gate called the modified-majority voter (MMV). The proposed gate works on the explicit interaction of the cell characteristic property for the implementation of digital circuits. This prominent feature of the proposed gate reduces the maximum hardware cost and implements highly efficient QCA structures. To verify the functionality of the proposed gate, some physical proofs, truth table and computational simulation results are performed. These results assured the validity of the existence of the proposed gate. It also dissipates less energy which has been calculated under three separate tunnelling energy levels using the QCAPro tool. To prove the effectiveness of the proposed MMV gate, several optimal irreversible arithmetic circuits such as three-input XOR, half-adder and full-adder are proposed. The modular layouts are verified with the freely available QCADesigner tool version 2.0.3.  相似文献   

7.
    
The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata(QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner. Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder(ESDBA) is 26% faster than the carry flow adder(CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder(EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead(CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of(N-1)+3.5 clock cycles compared to the N*One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.  相似文献   

8.
    
To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor (CMOS) technology developers. The scaling scenario is not an option nowadays and other technologies need to be investigated. The quantum-dot cellular automata (QCA) technology is one of the important emerging nanotechnologies that have attracted much researchers’ attention in recent years. This technology has many interesting features, such as high speed, low power consumption, and small size. These features make it an appropriate alternative to the CMOS technique. This paper suggests three novel structures of XNOR gates in the QCA technology. The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology. The proposed structures are used as the main building blocks for a single-bit comparator. The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature. The comparison results are encouraging to append the proposed structures to the library of QCA gates.  相似文献   

9.
沈泊  章倩苓 《半导体学报》2002,23(12):1332-1337
提出了一种可综合算术运算单元的性能评估与建模方法.该方法以单位门面积及延迟模型为基础,在设计的早期即可估算电路的面积、延迟等性能指标,从而便于设计者进行VLSI结构的优化,避免设计叠代;并以算术运算中最典型的二进制加法器为例,研究如何利用该模型对电路的VLSI实现结构进行评估、优化;理论分析的结论与电路的实现结果吻合,验证了该方法的有效性.  相似文献   

10.
基于量子细胞自动机的数值比较器设计   总被引:7,自引:0,他引:7       下载免费PDF全文
量子细胞自动机(QCA)可以构建逻辑门和QCA线。该文基于QCA设计了1位,4位和8位数值比较器,并用QCADesigner软件进行模拟。结果表明,所设计的电路具有正确的逻辑功能。通过对电路所需细胞数、面积和时延三方面性能分析,表明所设计的电路时延并不随输入位数呈线性增加,因而所设计的电路具有良好的时延性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号