首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Human cell extracts efficiently support replication of simian virus 40 (SV40) DNA in vitro, while mouse cell extracts do not. Since human DNA polymerase alpha-primase is the major species-specific factor, we set out to determine the subunit(s) of DNA polymerase alpha-primase required for this species specificity. Recombinant human, mouse, and hybrid human-mouse DNA polymerase alpha-primase complexes were expressed with baculovirus vectors and purified. All of the recombinant DNA polymerase alpha-primases showed enzymatic activity and efficiently synthesized the complementary strand on an M13 single-stranded DNA template. The human DNA polymerase alpha-primase (four subunits [HHHH]) and the hybrid DNA polymerase alpha-primase HHMM (two human subunits and two mouse subunits), containing human p180 and p68 and mouse primase, initiated SV40 DNA replication in a purified system. The human and the HHMM complex efficiently replicated SV40 DNA in mouse extracts from which DNA polymerase alpha-primase was deleted, while MMMM and the MMHH complex did not. To determine whether the human p180 or p68 subunit was required for SV40 DNA replication, hybrid complexes containing only one human subunit, p180 or p68, together with three mouse subunits (HMMM and MHMM) or three human subunits and one mouse subunit (MHHH and HMHH) were tested for SV40 DNA replication activity. The hybrid complexes HMMM and HMHH synthesized oligoribonucleotides in the SV40 initiation assay with purified proteins and replicated SV40 DNA in depleted mouse extracts. In contrast, the hybrid complexes containing mouse p180 were inactive in both assays. We conclude that the human p180 subunit determines host-specific replication of SV40 DNA in vitro.  相似文献   

2.
DNA polymerase alpha-primase is the only known eukaryotic enzyme that can start DNA replication de novo. In this study, we investigated the regulation of DNA replication by phosphorylation of DNA polymerase alpha-primase. The p180 and the p68 subunits of DNA polymerase alpha-primase were phosphorylated using Cyclin A-, B- and E- dependent kinases. This phosphorylation did not influence its DNA polymerase activity on activated DNA, but slightly stimulated primase activity using poly(dT) single-stranded DNA (ssDNA) without changing the product length of primers. In contrast, site-specific initiation of replication on plasmid DNA containing the SV40 origin is affected: Cyclin A-Cdk2 and Cyclin A-Cdc2 inhibited initiation of SV40 DNA replication in vitro, Cyclin B-Cdc2 had no effect and Cyclin E-Cdk2 stimulated the initiation reaction. DNA polymerase alpha-primase that was pre-phosphorylated by Cyclin A-Cdk2 was completely unable to initiate the SV40 DNA replication in vitro; Cyclin B-Cdc2-phosphorylated enzyme was moderately inhibited, while Cyclin E-Cdk2-treated DNA polymerase alpha-primase remained fully active in the initiation reaction.  相似文献   

3.
DNA polymerase alpha-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase alpha-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase alpha-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase alpha-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase alpha-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.  相似文献   

4.
Papovaviruses are valuable models for the study of DNA replication in higher eukaryotic organisms, as they depend on host factors for replication of their DNA. In this study we investigate the interactions between the human papillomavirus type 11 (HPV-11) origin recognition and initiator protein E1 and human polymerase alpha/primase (pol alpha/primase) subunits. By using a variety of physical assays, we show that both 180- (p180) and 70-kDa (p70) subunits of pol alpha/primase interact with HPV-11 E1. The interactions of E1 with p180 and p70 are functionally different in cell-free replication of an HPV-11 origin-containing plasmid. Exogenously added p180 inhibits both E2-dependent and E2-independent cell-free replication of HPV-11, whereas p70 inhibits E2-dependent but stimulates E2-independent replication. Our experiments indicate that p70 does not physically interact with E2 and suggest that it may compete with E2 for binding to E1. A model of how E2 and p70 sequentially interact with E1 during initiation of viral DNA replication is proposed.  相似文献   

5.
6.
Primase and helicase activities of bacteriophage T7 are present in a single polypeptide coded by gene 4. Because the amino terminal region of the gene 4 protein contributes to primase activity, we constructed a truncated gene 4 encoding the N-terminal 271-aa residues. The truncated protein, purified from cells overexpressing the protein, is a dimer in solution; the full-length protein is a hexamer. Although the fragment is devoid of dTTPase and helicase activities, it catalyzes template-directed synthesis of di-, tri-, and tetranucleotides. The rates for tetraribonucleotide synthesis and for dinucleotide extension on a 20-nucleotide template are similar for the full-length and truncated proteins. However, the activity of the primase fragment is unaffected by dTTP whereas the primase activity of the full-length protein is stimulated >14-fold. The primase fragment is defective in the interaction with T7 DNA polymerase in that primer synthesis cannot be coupled to DNA synthesis.  相似文献   

7.
The direct effect of the eukaryotic nuclear DNA-binding protein poly(ADP-ribose) polymerase on the activity of DNA polymerase alpha was investigated. Homogenously purified poly(ADP-ribose) polymerase (5 to 10 micrograms/ml) stimulated the activity of immunoaffinity-purified calf or human DNA polymerase alpha by about 6 to 60-fold in a dose-dependent manner. It had no effect on the activities of DNA polymerase beta, DNA polymerase gamma, and primase, indicating that its effect is specific for DNA polymerase alpha. Apparently, poly(ADP-ribosyl)ation of DNA polymerase alpha was not necessary for the stimulation. The stimulatory activity is due to poly(ADP-ribose) polymerase itself since it was immunoprecipitated with a monoclonal antibody directed against poly(ADP-ribose) polymerase. Kinetic analysis showed that, in the presence of poly(ADP-ribose) polymerase, the saturation curve for DNA template primer became sigmoidal; at very low concentrations of DNA, it rather inhibited the reaction in competition with template DNA, while, at higher DNA doses, it greatly stimulated the reaction by increasing the Vmax of the reaction. By the automodification of poly(ADP-ribose) polymerase, however, both the inhibition at low DNA concentration and the stimulation at high DNA doses were largely lost. Furthermore, stimulation by poly(ADP-ribose) polymerase could not be attributed to its DNA-binding function alone since its fragment, containing only the DNA-binding domain, could not exert full stimulatory effect on DNA polymerase, as of the intact enzyme. Poly(ADP-ribose) polymerase is co-immunoprecipitated with DNA polymerase alpha, using anti-DNA polymerase alpha antibody, clearly showing that poly(ADP-ribose) polymerase may be physically associated with DNA polymerase alpha. In a crude extract of calf thymus, a part of poly(ADP-ribose) polymerase activity existed in a 400-kDa, as well as, a larger 700-kDa complex containing DNA polymerase alpha, suggesting the existence in vivo of a complex of these two enzymes.  相似文献   

8.
We have analyzed the mutational spectra produced during in vitro DNA synthesis by DNA polymerase alpha-primase and DNA polymerase beta. The polymerase mutation frequency as measured in the in vitro herpes simplex virus thymidine kinase (HSV-tk) forward assay was increased when reactions utilized single-stranded DNA templates randomly modified by 20 mM N-ethyl-N-nitrosourea (ENU), relative to solvent-treated templates. A 20- to 50-fold increase in the frequency of G-->A transition mutations was observed for both polymerases, as expected due to mispairing by O6-ethylguanine lesions. Strikingly, ENU treatment of the template also resulted in a five- to 12-fold increased frequency of frameshift errors at heteropolymeric (non-repetitive) template sequences produced by polymerase beta and polymerase alpha-primase, respectively. The increased proportion of frameshift mutations at heteropolymeric sequences relative to homopolymeric (repetitive) sequences produced by each polymerase in response to ENU damage was statistically significant. For polymerase alpha-primase, one-base deletion errors at template guanine residues was the second most frequent mutational event, observed at a frequency only four-fold lower than the G-->A transition frequency. In the polymerase beta reactions, the frequency of insertion errors at homopolymeric (repetitive) sequences was increased six-fold using alkylated templates, relative to solvent controls. The frequency of such insertion errors was only three-fold lower than the frequency of G-->A transition errors by polymerase beta. Although ENU is generally regarded as a potent base substitution mutagen, these data show that monofunctional alkylating agents are capable of inducing frameshift mutations in vitro. Alkylation-induced frameshift mutations occur in both repetitive and non-repetitive DNA sequences; however, the mutational specificity is dependent upon the DNA polymerase.  相似文献   

9.
The functional interaction of simian virus 40 (SV40) large tumor antigen (T antigen) with DNA polymerase alpha (pol alpha)-primase complex, human single-stranded DNA binding protein (HSSB), and DNA polymerase delta (pol delta) holoenzyme, which includes pol delta, activator I (also called replication factor C), and proliferating cell nuclear antigen, at the replication fork was examined using the purified components that support SV40 DNA replication. Dilution of reaction mixtures during RNA primer synthesis revealed that T antigen remained associated continuously with the fork, while the pol alpha-primase complex dissociated from the complex during oligoribonucleotide synthesis. T antigen unwound duplex DNA from the SV40 core origin at a rate of 200 base pairs/min. Pol alpha-primase complex inhibited the rate of the unwinding reaction, and HSSB, pol alpha, and primase were all required for this effect. These requirements are the same as those essential for DNA primase-catalyzed oligoribonucleotide synthesis (Matsumoto, T., Eki, T., and Hurwitz, J. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 9712-9716). This result suggests that the pol alpha-primase complex interacts with T antigen and HSSB during the unwinding reaction to synthesize RNA primers and that the interaction decreases the rate of T antigen movement. While pol delta holoenzyme can elongate primed DNA chains at a rate of 400-600 nucleotides/min on singly primed phi X174 DNA, the rate of the leading strand synthesis catalyzed by pol delta holoenzyme in the SV40 replication system in vitro was about 200 nucleotides/min. This rate was similar to the unwinding rate catalyzed by T antigen. Thus, the rate of leading strand synthesis catalyzed by pol delta holoenzyme in vitro appears to be limited by the unwinding reaction catalyzed by T antigen.  相似文献   

10.
We have identified and partially purified two DNA polymerase activities from purified Trypanosoma brucei mitochondrial extracts. The DNA polymerase activity eluted from the single-stranded DNA agarose column at 0.15 M KCl (polymerase M1) was significantly inhibited by salt concentrations greater than 100 mM, utilized Mg2+ in preference to Mn2+ as a cofactor on deoxyribonucleotide templates with deoxyribose primers, and in the presence of Mn2+ favored a ribonucleotide template with a deoxyribose primer. A 44 kDa peptide in this fraction crossreacted with antisera against the Crithidia fasciculata beta-like mitochondrial polymerase. In activity gels the catalytic peptide migrated at an apparent molecular weight of 35 kDa. The DNA polymerase activity present in the 0.3 M KCl DNA agarose fraction (polymerase M2) exhibited optimum activity at 120-180 mM KCl, used both Mg2+ and Mn2+ as cofactors, and used deoxyribonucleotide templates primed with either deoxyribose or ribose oligomers. Activity gel assays indicate that the native catalytic peptide(s) is approximately 80 kDa in size. The two polymerases showed different sensitivities to several inhibitors: polymerase M1 shows similarities to the Crithidia fasciculata beta-like mitochondrial polymerase while polymerase M2 is a novel, salt-activated enzyme of higher molecular weight.  相似文献   

11.
The catalytic subunit of human DNA polymerase delta has been overexpressed in insect cells by a recombinant baculovirus. The recombinant protein has a Mr = approximately 125,000 and is recognized by polyclonal antisera against N-terminal and C-terminal peptides of the catalytic subunit of human DNA polymerase delta. The recombinant protein was purified to near homogeneity (approximately 1200-fold) from insect cells by chromatography on DEAE-cellulose, phosphocellulose, heparin-agarose, and single-stranded DNA-cellulose. The purified protein had both DNA polymerase and 3'-5' exonuclease activities. The properties of the recombinant catalytic subunit were compared with those of the native heterodimeric DNA polymerase delta isolated from fetal calf thymus, and the enzymes were found to differ in several respects. Although the native heterodimer is equally active with either Mn2+ or Mg2+ as divalent cation activator, the recombinant catalytic subunit is approximately 5-fold more active in Mn2+ than in Mg2+. The most striking difference between the two proteins is the response to the proliferating cell nuclear antigen (PCNA). The activity and processivity of native DNA polymerase delta are markedly stimulated by PCNA whereas it has no effect on the recombinant catalytic subunit. These results suggest that the small subunit of DNA polymerase delta is essential for functional interaction with PCNA.  相似文献   

12.
13.
The 21 S complex of enzymes for DNA synthesis in the combined low salt nuclear extract-post microsomal supernatant from HeLa cells [Malkas et al. (1990) Biochemistry 29:6362-6374] was purified by poly (ethylene glycol) precipitation, Q-Sepharose chromatography, Mono Q Fast Protein Liquid Chromatography (FPLC), and velocity gradient centrifugation. The procedure gives purified enzyme complex at a yield of 45%. The 21 S enzyme complex remains intact and functional in the replication of simian virus 40 DNA throughout the purification. Sedimentation analysis showed that the 21 S enzyme complex exists in the crude HeLa cell extract and that simian virus 40 in vitro DNA replication activity in the cell extract resides exclusively with the 21 S complex. The results of enzyme and immunological analysis indicate that DNA polymerase alpha-primase, a 3',5' exonuclease, DNA ligase I, RNase H, and topoisomerase I are associated with the purified enzyme complex. Denaturing polyacrylamide gel electrophoresis of the purified enzyme complex showed the presence of about 30 polypeptides in the size range of 300 to 15 kDa. Immunofluorescent imaging analysis, with antibodies to DNA polymerase alpha,beta and DNA ligase I, showed that polymerase alpha and DNA ligase I are localized to granular-like foci within the nucleus during S-phase. In contrast, DNA polymerase beta, which is not associated with the 21 S complex, is diffusely distributed throughout the nucleoplasm.  相似文献   

14.
The rabbit hemorrhagic disease virus (RHDV) (isolate AST/89) RNA-dependent RNA-polymerase (3Dpol) coding region was expressed in Escherichia coli by using a glutathione S-transferase-based vector, which allowed milligram purification of a homogeneous enzyme with an expected molecular mass of about 58 kDa. The recombinant polypeptide exhibited rifampin- and actinomycin D-resistant, poly(A)-dependent poly(U) polymerase. The enzyme also showed RNA polymerase activity in in vitro reactions with synthetic RHDV subgenomic RNA in the presence or absence of an oligo(U) primer. Template-size products were synthesized in the oligo(U)-primed reactions, whereas in the absence of added primer, RNA products up to twice the length of the template were made. The double-length RNA products were double stranded and hybridized to both positive- and negative-sense probes.  相似文献   

15.
DNA-dependent protein kinase (DNA-PK), composed of p470 catalytic subunit and p85/p70 heterodimer of Ku autoantigen, is considered a critical enzyme in DNA double-strand break repair. We purified DNA-PK from human leukaemic MOLT-4 cells by successive column chromatography and separated into p470 and Ku subunits by ultracentrifugation in glycerol gradient. We studied hyperthermic stability of DNA-PK holoenzyme and its separated subunits to test a possible role of DNA-PK in hyperthermic radiosensitization. DNA-PK was found to lose its activity rapidly at hyperthermic 44 degrees C, and further, Ku subunits instead of p470 catalytic subunits were found to be sensitive to hyperthermia. These results indicate a possibility that hyperthermic radiosensitization is mediated through the heat lability of Ku subunits of DNA-PK, impairing repair of radiation-induced double-strand break of DNA.  相似文献   

16.
We have generated proliferating cell nuclear antigen (PCNA) mutants by low fidelity PCR and screened for lethal mutations by testing for lack of complementation of a Schizosaccharomyces pombe strain disrupted for the pcn1 + gene. We thus identified eight lethal mutants out of the 50 cDNAs tested. Six were truncated in their C-terminal region due to the introduction of a stop codon within their coding sequences. Two were full-length with a single point mutation at amino acid 68 or 69. The two latter mutants were overexpressed in insect cells via a recombinant baculovirus and were purified. They were unable to stimulate DNA polymerase delta DNA replication activity on a poly(dA).oligo(dT) template. Cross-linking experiments showed that this was due to their inability to form trimers. Since these two mutations are adjacent and not located in a domain of the protein putatively involved in inter-monomer interactions, our results show that the beta-sheet betaF1 to which they belong must play an essential role in maintaining the 3-dimensional structure of S.pombe PCNA.  相似文献   

17.
Alterations in RNA polymerase structure can be detected using initial trypsin cleavage rates as a conformational probe. Both template (poly[d(A-T) . d(A-T)] and the RNA polymerase inhibitor, heparin, alter the rates at which the subunits of the enzyme are cleaved. However, while the presence of poly[d(A-T) . d(A-T)] slows the cleavage of subunits beta, sigma, and alpha by trypsin, heparin accelerates the cleavage of beta and sigma. Furthermore, the presence of heparin does not prevent the effect of poly[d(A-T) . d(A-T)] on the beta and sigma cleavage rates. Thus, heparin does not eliminate the interaction between DNA and RNA polymerase. That heparin does alter the nature of this interaction is demonstrated by the fact that template decreases the trypsin cleavage rate of subunit alpha in the absence, but not in the presence, of heparin. Like heparin, the addition of RNA to the reaction increases the accessibility of beta and sigma to trypsin. Hence the interaction of heparin with RNA polymerase may mimic the product, rather than the template, interaction.  相似文献   

18.
19.
Wheat germ initiation factor 2 (eIF2), like mammalian and yeast eIF2, contains three nonidentical subunits. The estimated molecular weights for the wheat subunits are 38,000 (p38), 42,000 (p42), and 50,000 (p50). Peptide sequence was obtained for the p38 subunit of wheat eIF2 and the resulting amino acid sequence suggested that it was actually the equivalent of the mammalian beta-subunit. A wheat sprout cDNA expression library was screened with antibody affinity purified to the p38 subunit. The DNA sequence of the clones obtained also indicated that the p38 subunit was the equivalent to the mammalian beta-subunit. The wheat p38 subunit was then expressed in Escherichia coli and antibodies raised to the purified recombinant protein. Only the p38 subunit of purified wheat germ eIF2 reacted with the antisera. The p38 subunit of wheat eIF2 is therefore the equivalent of mammalian eIF2beta.  相似文献   

20.
The human papillomavirus (HPV) E1 and E2 proteins bind cooperatively to the viral origin of replication (ori), forming an E1-E2-ori complex that is essential for initiation of DNA replication. All other replication proteins, including DNA polymerase alpha-primase (polalpha-primase), are derived from the host cell. We have carried out a detailed analysis of the interactions of HPV type 16 (HPV-16) E1 with E2, ori, and the four polalpha-primase subunits. Deletion analysis showed that a C-terminal region of E1 (amino acids [aa] 432 to 583 or 617) is required for E2 binding. HPV-16 E1 was unable to bind the ori in the absence of E2, but the same C-terminal domain of E1 was sufficient to tether E1 to the ori via E2. Of the polalpha-primase subunits, only p68 bound E1, and binding was competitive with E2. The E1 region required (aa 397 to 583) was the same as that required for E2 binding but additionally contained 34 N-terminal residues. In confirmation of these differences, we found that a monoclonal antibody, mapping adjacent to the N-terminal junction of the p68-binding region, blocked E1-p68 but not E1-E2 binding. Sequence alignments and secondary-structure prediction for HPV-16 E1 and other superfamily 3 (SF3) viral helicases closely parallel the mapping data in suggesting that aa 439 to 623 constitute a discrete helicase domain. Assuming a common nucleoside triphosphate-binding fold, we have generated a structural model of this domain based on the X-ray structures of the hepatitis C virus and Bacillus stearothermophilus (SF2) helicases. The modelling closely matches the deletion analysis in suggesting that this region of E1 is indeed a structural domain, and our results suggest that it is multifunctional and critical to several stages of HPV DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号