首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pentaploid endosperm nuclei in certain Gagea species exhibit large masses of sticky and dense chromatin, not observed in somatic nuclei. These heterochromatin masses most probably stem from the triploid chalasal polar nucleus of the embryo sac, thus representing an example of facultative heterochromatinisation in plants. In the present investigation, we studied the nuclei in Gagea lutea (L.) Ker-Gawl, endosperm tissue. The position of the heterochromatin in interphase nuclei was observed by confocal laser scanning microscopy (CLSM) and the DNA methylation status of the euchromatin and heterochromatin was analysed by immunolabelling with an antibody raised against 5-methylcytosine (anti-5-mC). In young endosperms, heterochromatin was relatively dispersed, occupying some peripheral and inner parts of the nuclei. In a later endosperm development, the nuclei became smaller and more pycnotic, and the heterochromatin masses were placed predominantly near the nuclear periphery. The distribution of anti-5-mC labelling on the heterochromatic regions was unequal: some parts appeared hypermethylated while other parts were, like the euchromatin, not labelled. During mitosis, the labelling intensity of all the chromosomes was approximately the same, thus indicating that there are no cytologically detectable methylation differences among the individual sets of chromosomes. However, differences in the anti-5-mC signal intensity along individual chromosomes were observed, resulting in banding patterns with highly positive bands apparently representing constitutive heterochromatic regions. From these results it is obvious that facultative heterochromatinisation, in contrast to constitutive heterochromatinisation, need not be strictly accompanied by a prominent DNA hypermethylation.  相似文献   

2.
DA/DAPI and C chromosomal heteromorphic sites (1q, 9q, 15p, 16q, Yq) in a sample of 136 unrelated individuals from the Garfagnana valley (Tuscany, Italy) have been analyzed quantitatively and qualitatively. The variations in length, between-homolog heteromorphisms, and intensity of fluorescence of the heterochromatic bands have been compared in two subsamples of the population (upper and middle valley) individualized according to geodemographic criteria. DA/DAPI heterochromatin differed significantly from C heterochromatin, showing a lower average amount and a higher variability at each site. This suggests a differential staining of DNA of the two banding systems. Furthermore, DA/DAPI heterochromatin was less uniformly distributed in the population than C heterochromatin and the regions 16q and Yq discriminated better between subsamples. The variations of DA/DAPI fluorescence at the 15p site demonstrated an excess of homomorphic individuals in the upper valley, which could be related to the mating structure of the population living in this area.  相似文献   

3.
Chromosome replication has been analysed in four species of Chilocorus. In C. ORBUS Csy., C. tricyclus Smith, and C. hexacyclus Smith, centric regions of all chromosomes are last to replicate, preceded in order by heterochromatic arms and euchromatic arms. In C. stigma Say, very late replication of centric regions can be detected only in otherwise wholly euchromatic chromosomes (= monophasics); in chromosomes with one arm heterochromatic ( = disphasics), these arms are last to replicate. Based on pachytene bivalent morphology and chromosome banding patterns, and supported by autoradiographic data, models are presented for the general organisation of Chilocorus chromosomes. All chromosomes in the first three species are subdivided into euchromatic arm, centric heterochromatin, and either a second euchromatic are (monophasics) or a heterochromatic arm (diphasics). Chilocorus stigma diphasics apparently lack distinct centric organisation, and are therefore divided into euchromatic and heterochromatic arms only.  相似文献   

4.
Human lymphocyte cultures were treated with iododeoxyuridine. This 5-halogenated thymidine analogue induces distinct undercondensations of the heterochromatin of human chromosome 9. The condensation of the other heterochromatic regions on chromosomes 1, 15, 16 and Y is also inhibited, but to a lesser extent. Optimum cell culture conditions required for the induction of undercondensations were determined. Up to 90% of mitotic cells reveal chromosome 9 heterochromatin decondensations when the substance is present in quantities of 1 x 10(-4) M during the last 7 h before cell fixation. In addition, examples of the usefulness of 5-IUDR in the analysis of chromosome aberrations involving chromosome 9 are presented. The interaction between 5-IUDR and chromosomal DNA, the modification of chromosomal proteins and factors inducing chromosomal decondensations are discussed.  相似文献   

5.
6.
Three families of tandemly repetitive DNA from Crepis capillaris were cloned and characterized. Data obtained from in situ hybridization indicate that these families are located mainly in the heterochromatic C-bands. The pCcH32 family hybridizes at the paracentromeric C-band of the NOR (nucleolus-organized region) chromosome and along most of the long arm of the same chromosome. The pCcD29 family is located in all the remaining C-bands of the karyotype, while the third family, pCcE9, is restricted to the more proximal C-bands. Nucleotide sequence comparisons between one cloned repeating unit from each DNA family showed some significant regions of homology between the families. We discuss the sequence relationships between the three DNA families and the significance of our data in relation to models of heterochromatin evolution, emphasizing the concepts of equilocality and the differentiation of the NOR-bearing chromosome. We also examine the possible role that chromosome disposition, in either mitotic or meiotic nuclei, plays in the distribution and homogenization of heterochromatic DNA sequences.  相似文献   

7.
The Australian rodent, Uromys caudimaculatus, consists of two chromosome races. a) The Southern Race is characterized by the possession of two to twelve B-chromosomes. These vary considerably in size, morphology, and C- and G-banding characteristics, they behave as univalent at meiosis and are inherited in a random manner. b) The Northern Race lacks B-chromosomes, but possesses large blocks of distal C-positive heterochromatin on between 18 and 28 of the 46 chromosomes. The C-blocks may be entirely G-positive entirely G-negative, or G-banded, suggesting heterogeneity with the C-blocks. There is extensive variation both between and within populations of the northern race in the number and size of the distal heterochromatic blocks. There is no apparent difference between the races in chiasma frequency. The northern race does have much higher proportion of interstitial versus distal chiasmata, although it is probable that this is merely a reflection of lack of crossing over in the heterochromatic blocks rather than an actual shift of chiasma localisation within the euchromatin. Despite the extensive differences between the races in the amount and organization of constitutive heterochromatin, hybrids show no abnormalities at meiosis and they are fully fertile.  相似文献   

8.
9.
Suppressors of position-effect variegation (Su(var)s) in Drosophila melanogaster are usually studied in the presence of chromosomal rearrangements, which exhibit variegated expression of euchromatic genes moved near to, or heterochromatic genes moved away from, centromeric heterochromatin. However, the effects of Su(var) mutations on heterochromatic gene expression in the absence of a variegating re-arrangement have not yet been defined. Here we present a number of results which suggest that Su(var) gene products can interact to affect the expression of the light gene in its normal heterochromatic location. We initially observed that eye pigment was reduced in several Su(var) double mutants; the phenotype resembled that of light mutations and was more severe when only one copy of the light gene was present. This reduced pigmentation could be alleviated by a duplication for the light gene or by a reduction in the amount of cellular heterochromatin. In addition, the viability of most Su(var) double mutant combinations tested was greatly reduced in a genetic background of reduced light gene dosage, when extra heterochromatin is present. We conclude that Su(var) gene products can affect expression of the heterochromatic light gene in the absence of any chromosomal rearrangements. However, it is noteworthy that mutations in any single Su(var) gene have little effect on light expression; we observe instead that different pairings of Su(var) mutations are required to show an effect on light expression. Interestingly, we have obtained evidence that at least two of the second chromosome Su(var) mutations are gain-of-function lesions, which also suggests that there may be different modes of interaction among these genes. It may therefore be possible to use this more sensitive assay of Su(var) effects on heterochromatic genes to infer functional relationships among the products of the 50 or more known Su(var) loci.  相似文献   

10.
In early spermatids of Urodeles the chromosome segments bearing constitutive heterochromatin are localized in one half of the round nucleus; this region becomes the basal part of the long nucleus of the spermatozoon. The euchromatic chromosome segments extend toward the anterior nuclear pole in a bouquet configuration (Macgregor and Walker, 1973). In the course of spermiohistogenesis, one of the heterochromatic regions (the acrosomal chromocenter) migrates from the basal part to the anterior half of the spermatid nucleus. This heterochromatic block is identical with a species-specific, definite C-band in the karyotype. This relationship between the acrosomal chromocenter and a specific chromosomal C-band was established in Triturus cristatus, T. marmoratus, T. alpestric and Cynops pyrrhogaster. In closely related species this particular C-band lies on similar chromosomes. - While the spermatid nucleus still retains its round shape the acrosomal chromocenter despiralizes into a long heterochromatic thread (acrosomal thread). Precisely at the position of this thread the nucleus evaginates and acquires a pear-like shape. During the elongation of the nuclear protrusion the acrosomal thread remains associated with the anterior end. At termination of spermiogenesis it lies closely below the acrosome in the tip of the spermatozoon. Spontaneous aberrations which affect the acrosomal chromocenter or the thread lead to the development of spermatozoa with defective tips. - Several euchromatic segments, interspersed between the heterchromatic segments, can be recognized in the completely despiralized acrosomal thread. Genes responsible for the morphogenetic activities of both, the acrosomal chromocenter and the acrosomal thread, in the development of the spermtip, might be localized in these interspersed euchromatic segments. The existence in higher vertebrates of an acrosomal chromocenter or an equivalent chromosomal region is discussed.  相似文献   

11.
Euchromatic genes are often silenced by rearrangements that place them within or near heterochromatin, a phenomenon known as position effect variegation (PEV). However, little is known about molecular structure of cis-acting heterochromatic fragments responsible for PEV. Here we report that heterochromatic cluster containing Stellate repeats, that encode putative regulatory subunit of protein kinase CK2 cause PEV of a reporter white 'mini-gene'. It is the first example of an euchromatic gene being silenced because of the proximity to the natural, well-defined heterochromatic repeat cluster.  相似文献   

12.
Using the methylase SssI enzyme, we have analyzed the degree of in situ methylation of human sperm pronuclear chromosomes obtained by fertilizing hamster oocytes with human sperm. Untreated (control) sperm chromosome complements showed a higher degree of in situ methylation, compared to sperm complements previously treated with 5-azadeoxycytidine or lymphocyte chromosomes. This indicates that human sperm pronuclear chromosomes have a lower degree of genomic methylation compared to that of other somatic cells. The similarity in the degree of in situ methylation of the euchromatic and heterochromatic regions of chromosomes 1, 9, 15, and 16 and the Y chromosome in human sperm does not support the existence of a possible correlation between hypomethylation and heterochromatin decondensation.  相似文献   

13.
Heterochromatin is the highly compact, usually pericentromeric, region of eukaryotic chromosomes. Unlike the more gene-rich euchromatin, heterochromatin remains condensed during interphase, when it is sequestered to the periphery of the nucleus. Here we show, by using fluorescent in situ hybridization to interphase diploid nuclei of Drosophila, that the insertion of heterochromatin into a euchromatic gene, which results in position-effect variegation (PEV), also causes the aberrant association of the gene and its homologous copy with heterochromatin. In correlation with the gene's mutant variegating phenotype, the cytological association of the heterochromatic region is affected by chromosomal distance from heterochromatin and by genic modifiers of PEV. Proteins that are thought to be involved in the formation of heterochromatin can therefore influence the interphase nuclear position of a chromosomal region. This suggests that heterochromatin and proteins involved in its formation provide a structural framework for the interphase nucleus.  相似文献   

14.
We have analysed the replication of the heterochromatic megachromosome that was formed de novo by a large-scale amplification process initiated in the centromeric region of mouse chromosome 7. The megachromosome is organized into amplicons approximately 30 Mb in size, and each amplicon consists of two large inverted repeats delimited by a primary replication initiation site. Our results suggest that these segments represent a higher order replication unit (megareplicon) of the centromeric region of mouse chromosomes. Analysis of the replication of the megareplicons indicates that the pericentric heterochromatin and the centromere of mouse chromosomes begin to replicate early, and that their replication continues through approximately three-quarters of the S-phase. We suggest that a replication-directed mechanism may account for the initiation of large-scale amplification in the centromeric regions of mouse chromosomes, and may also explain the formation of new, stable chromosome segments and chromosomes.  相似文献   

15.
In(1LR)pn2a is a pericentric inversion with a euchromatic breakpoint in the 2E polytene region and a heterochromatic breakpoint in the right arm of the X chromosome. It is associated with position-effect variegation (PEV) of the pn, wapl, Pgd and other vital loci of the 2E region, which are relocated near the bulk of the X heterochromatin. Cytological analysis showed that the rearrangement brings the 1A-2E euchromatic segment directly into contact with a major portion of the h34 block, a heterochromatic region that is positively stained by the N-banding technique and contains the AAGAG satellite sequences. Molecular cloning revealed the presence of a new junction between euchromatin and AAGAG satellite sequences and demonstrated that the euchromatic breakpoint of In(1LR)pn2a lies in the vinculin gene. In the X ray-induced secondary rearrangement In(1LR)r30, consisting of a pericentric inversion superimposed on In(1LR)pn2a, the h34 material remains associated with the 2E region but is separated from the rest of the X heterochromatin. In this case, the pn, wapl and Pgd loci no longer variegate, suggesting that the satellite-containing h34 region is not able per se to induce detectable PEV on the adjacent euchromatic genes.  相似文献   

16.
Region 20 of the polytene X chromosome of Drosophila melanogaster was studied in salivary glands (SG) and pseudonurse cells (PNC) of otu mutants. In SG chromosomes the morphology of the region strongly depends on two modifiers of position effect variegation: temperature and amount of heterochromatin. It is banded in XYY males at 25 degrees C and beta-heterochromatic in X0 males at 14 degrees C, i.e. it shows dynamic transitions. In PNC chromosomes region 20 is not heterochromatic, but demonstrates a clear banding pattern. Some molecular markers of mitotic heterochromatin were localized by means of in situ hybridization on PNC chromosomes: DNA of the gene su(f) in section 20C, the nucleolar organizer and 359-bp satellite in 20F. The 359-bp satellite, which has been considered to be specific for heterochromatin of the mitotic X chromosome, was found at two additional sites on chromosome 3L, proximally to 80C. The right arm of the X chromosome in SG chromosomes was localized in the inversion In(ILR)pn2b: the telomeric HeT-A DNA and AAGAG satellite from the right arm are polytenized, having been relocated from heterochromatin to euchromatin.  相似文献   

17.
The roles of differentiation, mitotic activity and intrinsic promoter strength in the maintenance of heterochromatic silencing were investigated during development using an inducible lacZ gene as an in vivo probe. Heterochromatic silencing is initiated at the onset of gastrulation, approximately 1 hour after heterochromatin is first visible cytologically. A high degree of silencing is maintained in the mitotically active imaginal cells from mid-embryogenesis until early third instar larval stage, and extensive relaxation of silencing is tightly associated with the onset of differentiation. Relaxation of silencing can be triggered in vitro by ecdysone. In contrast, timing and extent of silencing at both the initiation and relaxation stages are insensitive to changes in cell cycle activity, and intrinsic promoter strength also does not influence the extent of silencing by heterochromatin. These data suggest that the silencing activity of heterochromatin is developmentally programmed.  相似文献   

18.
19.
While investigating the copy number of minichromosome Dp(1;f)1187 sequences in the polyploid chromosomes of ovarian nurse and follicle cells of Drosophila melanogaster we discovered that restriction fragments spanning the euchromatic-heterochromatic junction of the chromosome and extending into peri-centromeric sequences had the unusual property of being selectively resistant to transfer out of agarose gels during Southern blotting, leading to systematic reductions in Dp1187-specific hybridization signals. This property originated from the peri-centromeric sequences contained on the junction fragments and was persistently associated with Dp1187 DNA, despite attempts to ameliorate the effect by altering experimental protocols. Transfer inhibition was unlikely to be caused by an inherent physical property of repetitive DNA sequences since, in contrast to genomic DNA, cloned restriction fragments spanning the euchromatic-heterochromatic junction and containing repetitive sequences transferred normally. Finally, the degree of inhibition could be suppressed by the addition of a Y chromosome to the genotype. On the basis of these observations and the fact that peri-centromeric regions of most eukaryotic chromosomes are associated with cytologically and genetically defined heterochromatin, we propose that peri-centromeric sequences of Dp1187 that are incorporated into heterochromatin in vivo retain some component of heterochromatic structure during DNA isolation, perhaps a tightly bound protein or DNA modification, which subsequently causes the unorthodox properties observed in vitro.  相似文献   

20.
The orientation of Giemsa C-bands has been studied in mitotic and interphase cells of Allium cepa. A sativum and of Aloe vera. The C-bands in these three species are located at the telomeres, secondary constriction region of the nucleolar chromosomes and the centromeric regions, respectively. Observations in A. cepa and Aloe indicate clearly that the interphase chromosomes are non-random in their orientation and possibly maintain their telophase configuration through the attachment of telomeres and perhaps of kinetochores with the nuclear membrane. Electron micrographs of onion cells also reveal that certain heterochromatic segments are associated with the nuclear membrane.--The nucleolar interstitial C-bands in A. sativum remain free in the nucleoplasm and may come close to each other due to heterochromatic attraction. Such a heterochromatic attraction is also evident between telomeric regions and between centromeres. However, a two by two attachment could not be noticed. A diagrammatic representation of the orientation of interphase chromosomes has been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号