首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
We have investigated the molecular and cellular basis for the regulation of expression and function of the muscarinic acetylcholine receptors. Treatment of cultured chick cardiac cells with the agonist carbachol results in decreased levels of mRNA encoding the m2 and m4 receptors. Treatment of chick embryos in ovo with carbachol results in decreased levels of mRNA encoding the potassium channel subunits GIRK1 and GIRK4 as well as the m2 receptor. There are thus multiple pathways for the regulation of mAChR responsiveness by long-term agonist exposure. Immunoblot, immunoprecipitation, and solution hybridization analyses have been used to quantitate the regulation of mAChR expression in chick retina during embryonic development. The m4 receptor is the predominant subtype expressed early in development, while the expression of the m3 and m2 receptors increases later in development. A cAMP-regulated luciferase reporter gene has been used to demonstrate that the m2 and m4 receptors have distinct specificities for coupling to G-protein subtypes to mediate inhibition of adenylyl cyclase. This system has also been used to demonstrate that beta-arrestin1 and beta-adrenergic receptor kinase-1 act synergistically to promote receptor desensitization. We have isolated the promoter region for the chick m2 receptor gene, identified regions of the promoter required to drive high level expression in cardiac and neural cells, and have identified a region which confers sensitivity of gene expression to neurally active cytokines. Finally, in order to determine the role of individual receptor subtypes in muscarinic-mediated responses in vivo, we have used the method of targeted gene disruption by homologous recombination to generate mice deficient in the m1 receptor.  相似文献   

2.
Intracellular tyrosine kinases link the G protein-coupled m1 muscarinic acetylcholine receptor (mAChR) to multiple cellular responses. However, the mechanisms by which m1 mAChRs stimulate tyrosine kinase activity and the identity of the kinases within particular signaling pathways remain largely unknown. We show that the epidermal growth factor receptor (EGFR), a single transmembrane receptor tyrosine kinase, becomes catalytically active and dimerized through an m1 mAChR-regulated pathway that requires protein kinase C, but is independent of EGF. Finally, we demonstrate that transactivation of the EGFR plays a major role in a pathway linking m1 mAChRs to modulation of the Kv1.2 potassium channel. These results demonstrate a ligand-independent mechanism of EGFR transactivation by m1 mAChRs and reveal a novel role for these growth factor receptors in the regulation of ion channels by G protein-coupled receptors.  相似文献   

3.
4.
Since the cloning and expression of many of the G protein-coupled receptors during the 1980s, there has been a massive increase in our understanding of many aspects of their function. The use of molecular biology to engineer and express mutant receptors has made it possible to determine key amino acids involved in receptor function. Although advances in molecular biology have contributed greatly to our understanding of the pharmacology and structure of the five subtypes of muscarinic receptor, much remains to be learned about the factors that regulate their expression and function. This review by El-Bdaoui Haddad and Jonathan Rousell describes the current state of awareness and highlights recent advances made in the elucidation of the mechanisms involved in muscarinic receptor regulation. Because most is known about the regulation of expression of the M2 receptor subtype, particular attention will be paid to it. Furthermore, this receptor subtype plays an important role in regulating acetylcholine output from airway cholinergic nerves, and there is substantial evidence from studies both in vivo and in vitro in human and animal models that these receptors are dysfunctional in asthma.  相似文献   

5.
The purpose of our work was to investigate how the cholinergic environment influences the targeting and the intracellular trafficking of the muscarinic receptor m2 (m2R) in vivo. To address this question, we have used immunohistochemical approaches at light and electron microscopic levels to detect the m2R in control rats and rats treated with muscarinic receptor agonists. In control animals, m2Rs were located mostly at postsynaptic sites at the plasma membrane of perikarya and dendrites of cholinergic and NPY-somatostatin interneurons as autoreceptors and heteroreceptors, respectively. Presynaptic receptors were also detected in boutons. The m2Rs were usually detected at extrasynaptic sites, but they could be found rarely in association with symmetrical synapses, suggesting that the cholinergic transmission mediated by m2R occurs via synaptic and nonsynaptic mechanisms. The stimulation of muscarinic receptors with oxotremorine provoked a dramatic alteration of m2R compartmentalization, including endocytosis with a decrease of the density of m2R at the membrane (-63%) and an increase of those associated with endosomes (+86%) in perikarya. The very strong increase of m2R associated with multivesicular bodies (+732%) suggests that oxotremorine activated degradation. The slight increase in the Golgi apparatus (+26%) suggests that the m2R stimulation had an effect on the maturation of m2R. The substance P receptor located at the membrane of the same neurons was unaffected by oxotremorine. Our data demonstrate that cholinergic stimulation dramatically influences the subcellular distribution of m2R in striatal interneurons in vivo. These events may have key roles in controlling abundance and availability of muscarinic receptors via regulation of receptor endocytosis, degradation, and/or neosynthesis. Further, the control of muscarinic receptor trafficking may influence the activity of striatal interneurons, including neurotransmitter release and/or electric activity.  相似文献   

6.
Muscarinic receptors expressed by rat oligodendrocyte primary cultures were examined by measuring changes in second messengers following exposure to carbachol, an acetylcholine analog, and by polymerase chain reaction. Inositol phosphate levels were measured in [3H]myo-inositol-labelled young oligodendrocyte cultures following stimulation with carbachol. Atropine, a specific muscarinic antagonist, prevented the carbachol-induced accumulation of inositol phosphates. The formation of inositol trisphosphate was concentration- and time-dependent, with the peak at 100 microM carbachol and 10 min. Carbachol increased intracellular calcium levels, which were dependent both on the mobilization of intracellular stores and influx of extracellular calcium. In initial experiments with more selective antagonists, the mobilization of intracellular calcium was preferentially inhibited by pirenzepine, a selective M1 antagonist, but not methoctramine, a selective M2 antagonist, suggesting M1 muscarinic receptor involvement. A role for protein kinase C in the regulation of carbachol-stimulated inositol phosphate formation and intracellular calcium mobilization was demonstrated, as acute pretreatment with phorbol-12,13-myristate acetate abolished the formation of both second messengers. Pretreatment with 100 microM carbachol abolished the 40% increase in the cyclic AMP accumulation stimulated by isoproterenol, a specific beta-adrenergic agonist. In turn, the inhibition was alleviated by pretreatment with atropine, suggesting muscarinic receptor involvement. Polymerase chain reaction carried out with specific m1 and m2 muscarinic receptor oligonucleotide primers, confirmed that these cells express, at least, the two muscarinic receptor subtypes. Without excluding the expression of other subtypes, these results suggest that developing oligodendrocytes express m1 (M1) and m2 (M2) muscarinic receptors capable of mediating phosphoinositide hydrolysis, mobilization of intracellular calcium and the attenuation of beta-adrenergic stimulation of cyclic AMP formation.  相似文献   

7.
Muscarinic receptors regulate a number of important basic physiologic functions including heart rate and motor and sensory control as well as more complex behaviors including arousal, memory, and learning. Loss of muscarinic receptor number or function has been implicated in the etiology of several neurological disorders including Alzheimer's dementia, Down's syndrome, and Parkinson's disease. Muscarinic receptors transduce their signals by coupling with G-proteins, which then modulate the activity of a number of effector enzymes and ion channels. Five subtypes of muscarinic receptors (m1-m5) have been identified by molecular cloning and much has been learned about their distribution, pharmacology, and structure. Less is known about the molecular mechanisms of receptor-effector coupling and the biological role of each receptor subtype. The ectopic expression of genes encoding a single muscarinic receptor subtype in mammalian cell lines has provided an important model system in which to investigate receptor subtype-specific pharmacology and signal transduction. Expression models have revealed that single muscarinic receptor m1, m3, or m5 subtypes can activate multiple signaling effectors simultaneously including phospholipases A2, C, and D, as well as tyrosine kinase and a novel class of voltage-insensitive calcium channels. The m2 or m4 receptors have been shown to augment phospholipase A2 in addition to their established role as inhibitory receptors acting through the attenuation of adenylate cyclase. In addition to allowing investigations of the regulatory mechanisms of muscarinic receptors, expression models provide an excellent tool to investigate receptor-subtype specific physiology and pharmacology.  相似文献   

8.
We constructed a double mutant version of the alpha subunit of Go that was regulated by xanthine nucleotides instead of guanine nucleotides (GoalphaX). We investigated the interaction between GoalphaX and G protein-coupled receptors in vitro. First, we found that the activated m2 muscarinic cholinergic receptor (MAChR) could facilitate the exchange of XTPgammaS for XDP in the GoalphaXbetagamma heterotrimer. Second, the GoalphaXbetagamma complex was able to induce the high affinity ligand-binding state in the N-formyl peptide receptor (NFPR). These experiments demonstrated that GoalphaX was able to interact effectively with G protein-coupled receptors. Third, we found that the empty form of GoalphaX, lacking a bound nucleotide and betagamma, formed a stable complex with the m2 muscarinic cholingeric receptor associated with the plasma membrane. Finally, we investigated the interaction of GoalphaX with receptor in COS-7 cells. The empty form of GoalphaX bound tightly to the receptor and was not activated because XTP was not available intracellularly. We tested the ability of GoalphaX to inhibit the activities of several different G protein-coupled receptors in transfected COS-7 cells and found that GoalphaX specifically inhibited Go-coupled receptors. Thus the modified G proteins may act as dominant-negative mutants to trap and inactivate specific subsets of receptors.  相似文献   

9.
By comparison to the other subtypes of muscarinic receptors, very little is known about the binding properties, locations, mechanisms and physiological functions of the M5 (m5)* receptor subtype. Studies of the m5 receptor have been hampered by the lack of m5-selective ligands or antibodies and a source that endogenously expresses predominantly the m5 receptor subtype. We have developed a pharmacological labeling strategy using the non-selective muscarinic antagonist [3H]NMS, in the presence of muscarinic antagonists and toxins in green mamba venom to occlude the m1-m4 receptor subtypes, to selectively label the m5 receptor subtype. This m5-selective labeling approach, along with those developed for the other four receptor subtypes, has permitted for the first time a comparison of the relative expression levels and anatomical localizations of the five muscarinic receptor subtypes in the brain. The distribution profile of the m5 receptor is distinct from the other four subtypes and is enriched in the outer layers of the cortex, specific subfields of the hippocampus, caudate putamen, olfactory tubercle and nucleus accumbens. These studies have also demonstrated that the levels of m5 receptor protein expression are apparently higher and more widespread than anticipated from previous in situ hybridization and immunoprecipitation studies. Taken together, the results suggest a unique and potentially physiologically important role for the m5 receptor subtype in modulating the actions of acetylcholine in the brain.  相似文献   

10.
Modulation of high-voltage-activated Ca2+ channels by muscarinic receptor agonists was investigated in isolated parasympathetic neurons of neonatal rat intracardiac ganglia using the amphotericin B perforated-patch whole cell recording configuration of the patch-clamp technique. Focal application of the muscarinic agonists acetylcholine (ACh), muscarine, and oxotremorine-M to the voltage-clamped soma membrane reversibly depressed peak Ca2+ channel current amplitude. The dose-response relationship obtained for ACh-induced inhibition of Ba2+ current (IBa) exhibited a half-maximal inhibition at 6 nM. Maximal inhibition of IBa amplitude obtained with 100 microM ACh was approximately 75% compared with control at +10 mV. Muscarinic agonist-induced attenuation of Ca2+ channel currents was inhibited by the muscarinic receptor antagonists pirenzepine (/=30% at +90 mV in the presence of ACh, indicating a voltage-independent component to the muscarinic receptor-mediated inhibition. Both dihydropyridine- and omega-conotoxin GVIA-sensitive and -insensitive Ca2+ channels were inhibited by ACh, suggesting that the M4 muscarinic receptor is coupled to multiple Ca2+ channel subtypes in these neurons. Inhibition of IBa amplitude by muscarinic agonists was also observed after cell dialysis using the conventional whole cell recording configuration. However, internal perfusion of the cell with 100 microM guanosine 5'-O-(2-thiodiphosphate) trilithium salt (GDP-beta-S) or incubation of the neurons in Pertussis toxin (PTX) abolished the modulation of IBa by muscarinic receptor agonists, suggesting the involvement of a PTX-sensitive G-protein in the signal transduction pathway. Given that ACh is the principal neurotransmitter mediating vagal innervation of the heart, the presence of this inhibitory mechanism in postganglionic intracardiac neurons suggests that it may serve for negative feedback regulation.  相似文献   

11.
Tolterodine [(R)-N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpropanamine ] is a new potent and competitive muscarinic receptor antagonist developed for the treatment of urinary urge incontinence and other symptoms of overactive bladder. In vivo, tolterodine exhibits functional selectivity for the urinary bladder over salivary glands, a profile that cannot be explained in terms of selectivity for a single muscarinic receptor subtype. The aim of this study was to compare the in vitro and in vivo antimuscarinic profiles of tolterodine with those of muscarinic receptor antagonists with distinct receptor subtype-selectivity profiles: darifenacin [(S)-2-[1-[2-(2,3-dihydrobenzofuran-5-yl)ethyl]-3-pyrrolidinyl]-2,2-d iphenylacetamide; selective for muscarinic M3 receptors]; UH-AH 37 (6-chloro-5,10-dihydro-5-[(1-methyl-4-piperidinyl)acetyl]-11H-dibenzo-[b ,e][1,4]diazepine-11-one; low affinity for muscarinic M2 receptors); and AQ-RA 741 (11-([4-[4-(diethylamino)butyl]-1-piperidinyl]acetyl)-5,11-dihydro-6H-py rido[2,3-b][1,4]benzodiazepine-6-one; high affinity for muscarinic M2 receptors). The in vitro profiles of these compounds were in agreement with previous reports; darifenacin and UH-AH 37 demonstrated selectivity for muscarinic M3/m3 over M2/m2 receptors, while the converse was observed for AQ-RA 741. In vivo, AQ-RA 741 was more potent (1.4-2.7-fold) in inhibiting urinary bladder contraction than salivation in the anaesthetised cat (i.e., a profile similar to that of tolterodine [2.5-3.3-fold]), while darifenacin and UH-AH 37 showed the reverse selectivity profile (0.6-0.8 and 0.4-0.5-fold, respectively). The results confirm that it is possible to separate the antimuscarinic effects on urinary bladder and salivary glands in vivo. The data on UH-AH 37 and darifenacin support the view that a selectivity for muscarinic M3/m3 over M2/m2 receptors may result in a more pronounced effect on salivation than on bladder contraction. The data on AQ-RA 741 may indicate that muscarinic M2/m2 receptors may have a role in bladder contraction.  相似文献   

12.
13.
14.
Neurotransmitter receptor plasticity is an important part of the compensatory processes by which the central nervous system adapts to pathological insult, long-term exposure to drugs or neuronal loss with advanced age. Receptor plasticity can be manifest as changes in the number of receptors (i.e., up- or down-regulation), changes in expression of mRNA for discrete receptor proteins, or alterations in receptor coupling to signal transduction systems. Evidence exists for impaired plasticity of neurons in the aged brain, which results in decreased ability to adjust to changes in their environment. However, such data are highly dependent on the neurotransmitter examined, the stimulus for receptor regulation and the animal model chosen for study. For example, senescent rats show an age-related impairment of muscarinic receptor up- or down-regulation after long-term exposure to cholinergic drugs. Thus, young rats exposed to chronic (three weeks) intracerebroventricular infusions of methylatropine or oxotremorine exhibit compensatory changes in the density of muscarinic receptors in frontal cortex and hypothalamus. In contrast, 3H-QNB binding is unaltered in the same brain regions of identically treated senescent rats. Similar observations of impaired muscarinic receptor plasticity in senescent animals have been confirmed by other investigators. Age-related differences in coupling of brain muscarinic receptors to G-proteins and in muscarinic receptor-stimulated phosphoinositide hydrolysis have also been reported. Interestingly, neuropeptides such as neurotensin, cholecystokinin and VIP can potentiate carbachol-stimulated phosphoinositide hydrolysis in frontal cortex of both young and aged rats. This adds another level at which cholinergic neurotransmission may be modulated in senescent animals. Potential age-related differences in the effects of chronic drug treatments or experimental brain lesions on muscarinic receptor coupling to second messenger systems or on expression of mRNA for particular muscarinic receptors are currently unknown. Hence, it is possible that senescent animals may show additional deficiencies in plasticity of muscarinic receptor mediated signal transduction or expression of muscarinic receptors subtypes.  相似文献   

15.
Muscarinic acetylcholine signalling plays major roles in regulation of consciousness, cognitive functioning, pain perception and circulatory homeostasis. Halothane has been shown to inhibit m1 muscarinic signalling. However, no comparative data are available for desflurane, sevoflurane or isoflurane, nor have the anaesthetic effects on the m3 subtype (which is also prominent in the brain) been studied. Therefore, we have investigated the effects of these compounds on isolated m1 and m3 muscarinic receptor function. Defolliculated Xenopus oocytes expressing recombinant m1 or m3 muscarinic or (for comparison) AT1A angiotensin II receptors were voltage clamped, and Ca(2+)-activated Cl- currents (ICl(Ca)) induced by acetyl-beta-methylcholine (Mch) or angiotensin II were measured in the presence of clinically relevant concentrations of halothane, sevoflurane, desflurane or isoflurane. To determine the site of action of the volatile anaesthetics we compared anaesthetic effects on m1, m3 and AT1A receptor function and studied the effects of volatile anaesthetics on signalling induced by intracellular injection of the second messenger IP3. Desflurane had a biphasic effect on m1 signalling, enhancing at a concentration of 0.46 mmol litre-1 but depressing at 0.92 mmol litre-1. A similar, although not significant, trend was observed with m3 signalling. Isoflurane had no effect on m1 signalling, but profoundly inhibited m3 signalling. Sevoflurane depressed the function of m1 and m3 signalling in a dose-dependent manner. Halothane, similar to its known effect on m1 signalling, dose-dependently depressed m3 function. ICl(Ca) induced by intracellular injections of IP3 were unaffected by all four anaesthetics. Similarly, none of the anaesthetics tested affected AT1A signalling. Absence of interference with AT1A signalling and intracellular pathways suggest that the effects of anaesthetics on muscarinic signalling most likely result from interactions with the m1 or m3 receptor molecule. Multiple interaction sites with different affinities may explain the biphasic response to desflurane. Anaesthetic-specific effects on closely related receptor subtypes suggest defined sites of action for volatile anaesthetics on the receptor protein.  相似文献   

16.
We have tested the hypothesis that guanine-nucleotide-binding-protein-coupled receptors may be able to interact with each other at a molecular level. To address this question, we have initially created two chimeric receptors, alpha 2/m3 and m3/alpha 2, in which the C-terminal receptor portions (containing transmembrane domains VI and VII) were exchanged between the alpha 2C-adrenergic and the m3 muscarinic receptor. Transfection of COS-7 cells with either of the two chimeric constructs alone did not result in any detectable binding activity for the muscarinic ligand N-[3H]methylscopolamine or the adrenergic ligand [3H]rauwolscine. However, cotransfection with alpha 2/m3 and m3/alpha 2 resulted in the appearance of specific binding sites (30-35 fmol/mg of membrane protein) for both radioligands. These sites displayed ligand binding properties similar to those of the two wild-type receptors. Furthermore, COS-7 cells cotransfected with alpha 2/m3 and m3/alpha 2 were able to mediate a pronounced stimulation of phosphatidylinositol hydrolysis upon stimulation with the muscarinic agonist carbachol (Emax approximately 40-50% of wild-type m3). A mutant m3 receptor (containing 16 amino acids of m2 receptor sequence at the N terminus of the third cytoplasmic loop) that was capable of binding muscarinic ligands but was virtually unable to stimulate phosphatidylinositol hydrolysis was also used in various cotransfection experiments. Coexpression of this chimeric receptor with other functionally impaired mutant muscarinic receptors (e.g., with an m3 receptor containing a Pro-->Ala point mutation in transmembrane region VII) resulted in a considerable stimulation of phosphatidylinositol breakdown after carbachol treatment (Emax approximately 40-50% of wild-type m3). Thus, these data suggest that guanine-nucleotide-binding-protein-coupled receptors can interact with each other at a molecular level. One may speculate that the formation of receptor dimers involving the intermolecular exchange of N- and C-terminal receptor domains (containing transmembrane domains I-V and VI and VII, respectively) may underlie this phenomenon.  相似文献   

17.
18.
Presynaptic modulation of [3H]GABA release was examined using rat cerebral cortical slices. In vitro addition of carbachol, a muscarinic receptor agonist, resulted in a significant suppression of the release of [3H]GABA evoked by high potassium (50 mM) stimulation in a dose dependent manner, while noradrenaline, isoproterenol, dopamine, 5-hydroxytryptamine, histamine and glutamic acid had no significant effect on the evoked release of [3H]GABA. This suppressive effect of carbachol was antagonized invariably by atropine. Furthermore, it was found that the suppressive action of carbachol could be antagonized by pirenzepine, a selective M1 muscarinic receptor antagonist, but not by AF-DX 116 and 4-DAMP, M2 and M3 receptor antagonists, respectively. These results suggest that the release of GABA from cerebral cortical GABA neurons may be modulated by presynaptic M1 muscarinic receptor.  相似文献   

19.
Hippocampal levels of mRNA encoding nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are rapidly induced by enhanced neuronal activity following seizures and glutamate or muscarinic receptor activation. However, the levels of neurotrophin-3 (NT-3) mRNA acutely decrease after limbic seizures suggesting that a different mode of regulation may exist for these neurotrophins. Here we show that BDNF and neutrotrophin-4 (NT-4), but not NT-3 itself, up-regulate NT-3 mRNA in cultured hippocampal neurons. In the rat hippocampus, the muscarinic receptor agonist, pilocarpine increased BDNF mRNA levels rapidly and those of NT-3 with a delay of several hours. Injection of BDNF into neonatal rats elevated NT-3 mRNA in the hippocampus which demonstrates that BDNF is able to enhance NT-3 expression in vivo. The regulation of NT-3 by BDNF and NT-4 enlargens the neurotrophic spectrum of these neurotrophins to include neuron populations responsive primarily to NT-3.  相似文献   

20.
Neural activity in the dorsal lateral geniculate nucleus of the thalamus (DLG) is modulated by an ascending cholinergic projection from the brainstem. The purpose of this study was to identify and localize specific muscarinic receptors for acetylcholine in the DLG. Receptors were identified in rat and cat tissue by means of antibodies to muscarinic receptor subtypes, ml-m4. Brain sections were processed immunohistochemically and examined with light and electron microscopy. Rat DLG stained positively with antibodies to the m1, m2,and m3 receptor subtypes but not with antibodies to the m4 receptor subtype. The m1 and m3 antibodies appeared to label somata and dendrites of thalamocortical cells. The m1 immunostaining was pale, whereas m3-positive neurons exhibited denser labeling with focal concentrations of staining. Strong immunoreactivity to the m2 antibody was widespread in dendrites and somata of cells resembling geniculate interneurons. Most m2-positive synaptic contacts were classified as F2-type terminals, which are the presynaptic dendrites of interneurons. The thalamic reticular nucleus also exhibited robust m2 immunostaining. Cat DLG exhibited immunoreactivity to the m2 and m3 antibodies. The entire DLG stained darkly for the m2 receptor subtype, except for patchy label in the medial interlaminar nucleus and the ventralmost C laminae. The staining for m3 was lighter and was distributed more homogeneously across the DLG. The perigeniculate nucleus also was immunoreactive to the m2 and m3 subtype-specific antibodies. Immunoreactivity in cat to the m1 or m4 receptor antibodies was undetectable. These data provide anatomical evidence for specific muscarinic-mediated actions of acetylcholine on DLG thalamocortical cells and thalamic interneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号