首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A texturized calf starter containing 5 (control) or 12% molasses [on a dry matter (DM) basis] was fed to dairy calves to determine effects on intake, growth, blood parameters, and rumen development. Forty-six Holstein calves (26 male and 20 female) were started at 2 +/- 1 d of age and studied for 42 d. Starter DM intake was measured and fecal scoring was conducted daily. Growth and blood parameter measurements were conducted weekly. A subset of 6 male calves (3 per treatment) was euthanized at 4 wk of age, and rumen tissue sampled for rumen epithelial growth measurements. Starter sugar content was significantly increased in the starter containing extra molasses. Postweaning and overall starter DM intake, overall total DM intake, daily heart girth change, and final heart girth were significantly decreased, whereas overall average daily gain tended to decrease when calves received starter containing 12% molasses. However, blood volatile fatty acid concentrations were significantly increased when calves received a starter containing 12% molasses. No significant differences were observed between calves receiving starters containing 5 or 12% molasses for all other variables. The data indicates that adding extra molasses to a texturized calf starter decreases intake and structural growth, possibly causing decreased weight gain, but increases blood volatile fatty acid concentrations and slightly increases ruminal development. However, feed handling and physical prehension problems in addition to the negative influences on calf growth and intake do not support increasing starter molasses content to 12% of the supplement.  相似文献   

2.
Neonatal Holstein calves were fed texturized calf starters containing 33% whole (WC), dry-rolled (DRC), roasted-rolled (RC), or steam-flaked (SFC) corn to investigate how corn processing method affects intake, growth, rumen and blood metabolites, and rumen development. In the first experiment, 92 Holstein calves (52 male and 40 female) were started at 2 +/- 1 d of age and studied for 42 d. Starter dry matter (DM) intake was measured and fecal scoring conducted daily. Growth and blood parameter measurements were conducted weekly. A subset of 12 male calves (3/treatment) was euthanized at 4 wk of age and rumen tissue sampled for rumen epithelial development measurements. Experiment 2 consisted of 12 male Holstein calves ruminally cannulated at 7 +/- 1 d of age. Rumen fluid and blood samples were collected during wk 2 to 6. In the first experiment, postweaning and overall starter and total DM intake were significantly higher in calves fed starter with DRC than RC or SFC. Postweaning and overall starter and total DM intake were significantly higher in calves fed starter with WC than SFC. Postweaning average daily gain was significantly greater in calves fed starter with DRC than SFC. Blood volatile fatty acid concentrations were significantly higher in calves fed starter with SFC than in calves fed all other treatments. Papillae length and rumen wall thickness at 4 wk were significantly greater in calves fed starter with SFC than DRC and WC, respectively. In experiment 2, calves fed starter with WC had higher rumen pH and lower rumen volatile fatty acid concentrations than calves fed all other starters. Rumen propionate production was increased in calves receiving starter with SFC; however, rumen butyrate production was higher in calves fed starter with RC. Results indicate that the type of processed corn incorporated into calf starter can influence intake, growth, and rumen parameters in neonatal calves. Calves consuming starter containing RC had similar body weight, feed efficiency, and rumen development but increased structural growth and ruminal butyrate production when compared with the other corn processing treatments.  相似文献   

3.
The objective of this study was to compare the effects of feeding preweaning dairy calves pasteurized milk once or twice a day with or without a combination of yeast-derived products. Holstein heifer calves (n = 48) from The Pennsylvania State University dairy herd were fed 3.8 L of colostrum in 1 feeding and randomly assigned to 1 of 4 treatments (once-a-day milk feeding with or without live yeast culture and mannan-rich fraction and twice-a-day milk feeding with or without live yeast culture and mannan-rich fraction). All calves were fed 6 L of milk daily. Weekly growth measurements and blood samples were taken 3 h after the morning milk feeding for all animals. Growth measurement included body weight, hip width, and withers height. Calf starter refusal was recorded weekly, and a sample was taken to determine dry matter intake. Daily health scores were recorded for each calf using a standard scoring system. Intake, growth measurements, haptoglobin, and health scores data were analyzed using repeated measures analysis with calf included as a random variable. Preweaning average daily gain was 553.4 and 512.1 g/d for calves fed milk once and twice a day, respectively, and we found no difference between treatments. Preweaning calf starter intake was 242.3 and 198.7 g/d for calves fed milk once and twice a day, respectively, and we found no treatment differences. Preweaning calf starter intake was 224.3 and 216.6 g/d for calves fed yeast and without yeast, respectively. Withers height and hip width were similar in calves fed milk either once or twice a day; however, calves fed yeast tended to have greater withers height and hip width than control calves. Haptoglobin concentration as a measure of stress had least squares means of 4.0 and 9.5 ± 3.5 µg/mL for calves fed milk once or twice a day, respectively, and we found no difference among treatments. Scours score and total daily score were similar for calves fed milk once or twice a day. These results suggest that feeding milk once a day can be successfully applied to a calf feeding system and that yeast products may improve structural growth.  相似文献   

4.
The objective of this research was to evaluate the effects of corn silage inclusion in starter feed provided to calves after birth through weaning at 7 wk of age. Thirty-six heifer calves and 9 bull calves were individually housed in hutches. Calves in treatment groups received pasteurized milk with all calf starter, 25% calf starter and 75% corn silage, or all corn silage. Values were recorded daily for feed intake and health, which included fecal, respiratory, and attitude scores; and at wk 2, 4, and 8 for concentrations of serum protein, hematocrit, and serum β-hydroxybutyrate. Body weight, withers height, and hip height were measured at wk 2, 4, 8, and 52. Nine bull calves (3/treatment) were killed at 8 wk of age for assessment of rumen and intestinal tissue morphology. Feed intake and average daily gain were not different among treatments. Least squares means of rumen papillae lengths were significantly different and decreased as corn silage inclusion increased. Crypt depths and total thickness of epithelium were reduced for the corn silage group. Least squares means of body weight, heart girth, hip height, withers height, serum protein, hematocrit, and β-hydroxybutyrate concentrations did not differ among treatments. These data indicated that the mixture of corn silage and starter did not affect growth, feed intake, or intestinal morphology but did affect rumen wall morphology. Feeding solely corn silage as starter feed stunted the growth of rumen papillae and tended to impair intestinal morphology, indicating that only calf starter or a mixture of calf starter and corn silage is more appropriate.  相似文献   

5.
The objective of this experiment was to investigate the effects of different levels of alfalfa hay (AH) and sodium propionate (Pro) added to starter diets of Holstein calves on growth performance, rumen fermentation characteristics, and rumen development. Forty-two male Holstein calves (40 ± 2 kg of birth weight) were used in a complete randomized design with a 3 × 2 factorial arrangement of treatments. Dietary treatments were as follows: (1) control = concentrate only; (2) Pro = concentrate with 5% sodium propionate [dry matter (DM) basis]; (3) 5% AH = concentrate + 5% alfalfa hay (DM basis); (4) 5% AH + Pro = concentrate + 5% alfalfa hay + 5% sodium propionate (DM basis); (5) 10% AH = concentrate + 10% alfalfa hay (DM basis); and (6) 10% AH + Pro = concentrate + 10% alfalfa hay + 5% sodium propionate (DM basis). All calves were housed in individual pens bedded with sawdust until 10 wk of age. They were given ad libitum access to water and starter throughout the experiment and were fed 2 L of milk twice daily. Dry matter intake was recorded daily and body weight weekly. Calves from the control, 10% AH, and 10% AH + Pro treatments were euthanized after wk 10, and rumen wall samples were collected. Feeding of forage was found to increase overall dry matter intake, average daily gain, and final weight; supplementing sodium propionate had no effect on these parameters. Calves consuming forage had lower feed efficiency than those on the Pro diet. Rumen fluid in calves consuming forage had higher pH and greater concentrations of total volatile fatty acids and molar acetate. Morphometric parameters of the rumen wall substantiated the effect of AH supplementation, as plaque formation decreased macroscopically. Overall, the interaction between forage and sodium propionate did not affect calf performance parameters measured at the end of the experiment. Furthermore, inclusion of AH in starter diets positively enhanced the growth performance of male Holstein calves and influenced both the macroscopic and microscopic appearances of the rumen wall. These benefits, however, were small when only sodium propionate was offered.  相似文献   

6.
The objective of the experiment was to evaluate the effects of steam-flaked corn grains and soybeans on calf health, growth, and selected blood parameters. Holstein bull calves (n = 30, approximately 7 ± 3 d of age) were purchased from local dairy farms and offered milk, starter diets, and hay, and were then assigned to the experiment at 21 ± 3 d of age. Calves were blocked into 3 treatments by birth date and body weight and randomly assigned to receive fresh milk and a commercial pelleted starter containing extruded corn and soybeans (ECS), steam-flaked corn and soybeans (SFCS), or ground corn and soybeans (GCS). The experiment was conducted with calves from 3 to 13 wk of age. Body weight, calf starter intake, milk intake, total dry matter intake, and body structural growth were not significantly influenced by corn and soybean processing during the study; however, feed efficiency was significantly improved by the SFCS treatment. Average daily gain generally decreased during the weaning week for all treatments, but did not differ significantly among treatments. Health incidences for calves fed the SFCS starter were lower than those fed the other 2 treatments. The blood hematocrit was higher for calves fed the SFCS starter than for those fed the GCS and ECS starters during wk 6 to 11. The concentration of plasma β-hydroxybutyrate was higher for the calves fed the GCS and SFCS treatments than for those fed the ECS treatment during wk 6 to 13, but lower during wk 4 and 5. Plasma glucose concentrations decreased remarkably with increasing calf age but were not affected by corn and soybean processing. Plasma nonesterified fatty acids were influenced by calf age, and higher NEFA concentration was observed in the SFCS treatment than in the other 2 treatments during wk 5 to 9. Calves consuming the SFCS starter had similar average daily gain, milk intake, starter intake, total dry matter intake, and body structure, but had improved feed efficiency when compared with animals consuming the GCS and ECS starters. The SFCS starter decreased incidence of diarrhea during the postweaning period and required less veterinary treatment. These data suggest that the steam-flaking of corn and soybeans can influence the growth performance and the selected blood parameters of calves and that, in this study, the extrusion of corn and soybeans had no beneficial effect on the growth performance of calves.  相似文献   

7.
The objectives of this study were to determine the effects of the weaning transition and supplemental rumen-protected butyrate on subacute ruminal acidosis, feed intake, and growth parameters. Holstein bull calves (n = 36; age = 10.7 ± 4.1 d; ± standard deviation) were assigned to 1 of 4 treatment groups: 2 preweaning groups, animals fed milk replacer only (PRE-M) and those fed milk replacer, calf starter, and hay (PRE-S); and 2 postweaning groups, animals fed milk replacer, calf starter, and hay without supplemental rumen-protected butyrate (POST-S) or with supplemental rumen-protected butyrate at a rate of 1% wt/wt during the 2-wk weaning transition (POST-B). Milk replacer was provided at 1,200 g/d; starter, water, and hay were provided ad libitum. Weaning took place over 14 d by reducing milk replacer provision to 900 g/d in wk 7, 600 g/d in wk 8, and 0 g/d in wk 9. Rumen pH was measured continuously for 7 d during wk 6 for PRE-S and PRE-M and during wk 9 for POST-S and POST-B. After rumen pH was measured for 7 d, calves were euthanized, and rumen fluid was sampled and analyzed for volatile fatty acid (VFA) profile. Individual feed intake was recorded daily, whereas, weekly, body weights were recorded, and blood samples were collected. Compared with PRE-M, PRE-S calves tended to have a greater total VFA concentration (35.60 ± 11.4 vs. 11.90 ± 11.8 mM) but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.17 ± 0.21, respectively). Between PRE-S (wk 6) and POST-S (wk 9), calf starter intake increased (250 ± 219 vs. 2,239 ± 219 g/d), total VFA concentrations increased (35.6 ± 11.4 vs. 154.4 ± 11.8 mM), but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.40 ± 0.22, respectively). Compared with POST-S, POST-B calves had greater starter intake in wk 7, 8, and 9, but POST-B tended to have lower total VFA concentration (131.0 ± 11.8 vs. 154.4 ± 11.8 mM) and lower mean ruminal pH (5.83 ± 0.21 vs. 6.40 ± 0.22). In conclusion, the weaning transition does not appear to affect rumen pH and VFA profile, but supplementing rumen-protected butyrate during the weaning transition increased starter intake and average daily gain. Further, these data suggest that the ability of the rumen to manage rumen pH changes fundamentally postweaning. Why weaned calves with lower rumen pH can achieve higher calf starter intakes is unclear; these data suggest the effect of rumen pH on feed intake differs between calves and cows.  相似文献   

8.
The objective of this study was to evaluate the effects of substituting high fiber byproducts for dry ground corn in calf starter on growth and rumen pH during the weaning transition. Holstein bull calves were raised on an intensified nursing program using milk replacer containing 26% CP and 18% fat. Calves were fed a texturized calf starter containing either dry ground corn at 18.8% of dry matter (DM; CRN), beet pulp replacing dry ground corn at 10.2% dietary DM (BP), or triticale dried distillers grains with solubles replacing dry ground corn and high-protein feedstuffs at 18.6% of dietary DM (DDGS) in the pellet; treatment calf starters differed only in the pellet portion. Starch concentrations of CRN, BP, and DDGS were 35.3, 33.4, and 31.4%, respectively. After a calf consumed 2.50 kg of starter for 3 consecutive days, a small ruminant rumen pH data logger was inserted orally and rumen pH was measured continuously for 4d. Calves were then killed and rumen fluid was sampled to determine volatile fatty acid profile. No difference was found in overall average daily gain or growth rates of hip height, withers height, and heart girth. During the weaning transition, rate of increase in calf starter intake was greater for calves fed DDGS compared with those fed CRN (87.7 vs. 77.5 g/d), but lower for calves fed BP compared with CRN (68.1 vs. 77.5 g/d). The area under pH 5.8 (470 vs. 295 min × pH/d) or pH 5.2 (72.7 vs. 16.4 min × pH/d) was greater for calves fed DDGS than those fed CRN. Rumen pH profile was not affected by BP treatment compared with CRN, but calves fed BP tended to have greater water intake than those fed CRN (6.6 vs. 5.8 L/d). Volatile fatty acid profile was not affected by treatment with the exception of molar proportion of butyrate, which tended to be lower for calves fed BP compared with those fed CRN (15.0 vs. 16.6%). Hay intake was positively correlated to mean rumen pH for calves used in this study (r=0.48). Decreasing dietary starch concentration did not mitigate rumen acidosis in calves during weaning transition, and low rumen pH did not adversely affect growth during the weaning transition.  相似文献   

9.
We investigated the effect of reconstitution of alfalfa hay on starter feed intake, nutrient digestibility, growth performance, rumen fermentation, selected blood metabolites, and health criteria of dairy calves during the pre- and postweaning periods. A total of 20 newborn male Holstein calves (3 d of age; 40.3 ± 1.30 kg of body weight; ±SE) were assigned randomly to 1 of 2 treatments, a starter feed containing either 10% dry (AH) or reconstituted alfalfa hay (RAH), each consisting of 10 calves. Alfalfa hay was reconstituted with water 24 h before feeding to achieve a theoretical dry matter content of 20%. Both starter feeds had the same ingredients and nutrient compositions but differed in their dry matter content (91.2 and 83.8% dry matter for AH and RAH, respectively). Calves were weaned on d 50 and remained on the study until d 70. All calves had free access to fresh and clean drinking water and the starter feed at all times. During the study period, the average maximum temperature-humidity index was 73.8 units, indicating no degree of environmental heat load for dairy calves. Starter feed dry matter intake, total dry matter intake, and body weight (at weaning and at the end of the trial) were unaffected by treatment. Nutrient intake (except for total ether extract intake) increased during the postweaning period compared with the preweaning period. Average daily gain and feed efficiency were unchanged between treatments. Calves had higher average daily gain and skeletal growth during the postweaning period; however, feed efficiency was lower during the post- versus preweaning period. Calves fed RAH gained more hip width and body barrel compared with calves fed AH during the preweaning and all studied periods, respectively. Rectal temperature was similar between treatments, but feeding RAH decreased fecal score and general appearance score during the preweaning period. Apparent total-tract nutrient digestibility was not affected by reconstitution of alfalfa hay; however, reconstitution increased total-tract digestibility of neutral detergent fiber during the postweaning period. Ruminal fluid pH, and concentrations and profile of total volatile fatty acids were unchanged between treatments. Molar concentration of propionate and acetate to propionate ratio increased and decreased, respectively, during the postweaning period. Reconstitution of alfalfa hay did not affect concentrations of glucose, β-hydroxybutyrate, blood urea N, and albumin, and albumin to globulin ratio during the studied periods; however, reconstitution increased concentration of blood total protein during the overall period. Calves had higher concentrations of blood glucose and globulin during the preweaning and β-hydroxybutyrate during the postweaning period. Overall, reconstitution of alfalfa hay did not interact with calf phase (pre- vs. postweaning) to affect dry matter intake, growth performance, and metabolic indications of rumen development (measured as ruminal volatile fatty acids and selected blood metabolites), but improved health-related variables (fecal score and general appearance score) during the preweaning period.  相似文献   

10.
《Journal of dairy science》2022,105(5):4099-4115
The objectives of this study were to investigate how milk replacer (MR) allowance and differing concentrations of starch and neutral detergent fiber in starter alters visceral tissue and overall growth of the calf. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) arranged in a 2 × 2 factorial based on daily MR allowance (MRA) and amount of starch in pelleted starter (SPS) as follows: 0.691 kg of MR/d [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch, respectively) and 1.382 kg of MR/day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered to minimize intake. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning, and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Intakes were measured daily, and body weight (BW) and blood samples were recorded and collected weekly. Calves were dissected in wk 8 for visceral tissue measurements. Overall, there was increased MR DM intake for the high- (0.90 ± 0.01 kg/d; ± SE) compared with the low-MRA (0.54 ± 0.01 kg/d) calves, whereas starter DM intake increased in low- (0.47 ± 0.05 kg/d) compared with high-MRA (0.20 ± 0.05 kg/d) calves, which was driven by increases in wk 6, 7, and 8. High-MRA calves had increased BW during wk 2, 3, 4, 5, 6, and 7. The difference in BW disappeared by wk 8, with overall average daily gain having a tendency to be increased in high (0.57 ± 0.04 kg/d) compared with low-MRA (0.50 ± 0.04 kg/d) calves, whereas average daily gain was increased in high-MRA calves during wk 2 and 3 and increased in low-MRA calves during wk 7 and 8. There were several differences throughout visceral tissue measurements, but most notably, an increase in rumen mass (i.e., full, empty, and digesta weights) in low- compared with high-MRA calves, as well as in low- compared with high-SPS calves was observed. The length, width, and 2-dimensional area of rumen papillae were also increased in low- (area: 0.88 ± 0.03 mm2) compared with high-MRA (0.46 ± 0.03 mm2) calves. The majority of differences were attributed to increased MR allowance, which contributed to reduced pelleted starter intake by more than 50% and reduced rumen development, whereas differences in starch intake from the completely pelleted starter had minimal effects on overall growth and tissue measurements.  相似文献   

11.
In a series of 5 trials, Holstein calves from zero to 12 wk old were housed in pens bedded with straw and fed diets to evaluate physical form of starters containing different processed corn on calf performance. Starters were formulated to have similar ingredient and nutrient compositions. Calves, initially less than 1 wk old, were housed in individual pens through 8 wk and weaned at 6 wk in trial 1 and at 4 wk in trials 2 and 3. In trials 4 and 5, calves initially 8 wk old were housed in group pens (6 calves/pen) from 8 to 12 wk. Trial 1 compared feeding calves a pelleted versus textured starter. Trial 2 compared feeding calves a textured starter versus feeding half meal starter with half textured starter. Trial 3 compared feeding calves textured starters containing whole, steam-flaked, or dry rolled corn. Trial 4 compared feeding calves textured starters containing steam-flaked versus dry rolled corn. Trial 5 compared feeding calves textured starters containing whole or dry rolled corn. Measurements included average daily gain (ADG), starter intake, feed efficiency, hip width change, body condition score change, fecal scores, and medical treatments. Physical form of starter feed did not affect any measurements in trials 1, 3, 4, and 5. In trial 2, calves fed starters manufactured with large amounts of fines had 11% less feed intake and 6% slower ADG than calves fed a textured starter. When starters contained similar ingredient and nutrient contents, manufacturing processes did not affect calf performance unless the diet contained a significant amount of fines, which reduced intake and ADG.  相似文献   

12.
A meta-analysis of the potential effect of forage provision on growth performance and rumen fermentation of dairy calves was conducted using published data from the literature (1998–2016). Meta-regression was used to evaluate the effects of different forage levels, forage sources, forage offering methods, physical forms of starter, and grain sources on the heterogeneity of the results. We considered 27 studies that reported the effects of forage provision to dairy calves. Estimated effect sizes of forage were calculated on starter feed intake, average daily gain (ADG), feed efficiency (FE), body weight (BW), and rumen fermentation parameters. Intake of starter feed, ADG, BW, ruminal pH, and rumen molar proportion of acetate increased when supplementing forage but FE decreased. Heterogeneity (the amount of variation among studies) was significant for intake of starter feed, ADG, FE, final BW, and rumen fermentation parameters. Improving overall starter feed intake was greater in calves offered alfalfa hay compared with those offered other types of forages. During the milk feeding and overall periods, improving ADG was greater for calves fed a high level of forage (>10% in dry matter) compared with those fed a low level of forage (≤10% in dry matter) diets. The advantages reported in weight gain at a high level of forage could be due to increased gut fill. Improving overall ADG was lower for calves offered forages with textured starter feed compared with ground starter feed. The meta-regression analysis revealed that changes associated with forage provision affect FE differently for various forage sources and forage offering methods during the milk-feeding period. Forage sources also modulated the effect of feeding forage on ruminal pH during the milk-feeding period. In conclusion, forage has the potential to affect starter feed intake and performance of dairy calves, but its effects depend on source, level, and method of forage feeding and physical form of starter feed independently of grain sources included in the starter feed.  相似文献   

13.
The objective of this study was to investigate the effects of the physical forms of starter and forage sources on feed intake, growth performance, rumen pH, and blood metabolites of dairy calves. Forty male Holstein calves (41.3 ± 3.5 kg of body weight) were used (n = 10 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors being physical forms of starter (coarse mash and texturized) and forage source [alfalfa hay (AH) and wheat straw (WS)]. Individually housed calves were randomly assigned to 1 of the 4 dietary treatments, including (1) coarsely mashed (CM; coarse ground grains combined with a mash supplement) starter feed with AH (CM-AH), (2) coarsely mashed starter feed with WS (CM-WS), (3) texturized feed starter (TF; includes steam-flaked corn, steam-rolled barley combined with a pelleted supplement) with AH (TF-AH), and (4) TF with WS (TF-WS). Both starters had the same ingredients and nutrient compositions but differed in their physical forms. Calves were weaned on d 56 and remained in the study until d 70. All calves had free access to drinking water and the starter feeding at all times. No interaction was detected between the physical forms of starter feeds and forage source concerning starter intake, dry matter intake, metabolizable energy (ME) intake, average daily gain (ADG)/ME intake, ADG, and feed efficiency (FE). The preweaning and overall starter feed intake, dry matter intake, and ME intake were greater for calves fed TF starter diets than those fed CM starter diets. The ADG/ME intake was greater for calves fed TF starter diets than that fed CM starter. The FE was greater for calves fed TF starter diets compared with those fed CM starter during the preweaning, postweaning, and overall periods. The WS improved FE during the postweaning period compared with AH. The physical form of starter, forage source, and their interaction did not affect plasma glucose, triglycerides, and very low-density lipoprotein concentrations. Ruminal pH was greater for calves fed TF starter diets than those fed CM starter on d 30 of life. An interaction was observed between the physical forms of starter diets and forage source for β-hydroxybutyrate on d 28. These results showed that when starter diets contained similar ingredients and nutrient contents, processing calf starters to reduce the number of fine particles can improve the growth performance in dairy calves. Furthermore, the provision of WS improved FE and ADG of calves during the postweaning period.  相似文献   

14.
Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP).  相似文献   

15.
Our objective was to examine the potential relationship between starch concentration of dry feed and growth performance of young dairy calves via mixed-effects model analyses. A database was developed from 6 published studies conducted at the Nurture Research Center, Provimi (Brookville, OH), from 2008 to 2017 that included 18 dietary treatments and 372 calves at 0 to 8 wk of age in 5 nursery trials and 26 dietary treatments and 660 calves at 8 to 16 wk of age in 8 grower trials. The dry feeds ranged from 10.1 to 53.3% starch, 12.1 to 45.3% neutral detergent fiber, and 2.7 to 3.0 Mcal/kg of metabolizable energy [dry matter (DM) basis]. In all nursery trials, with increasing starch concentration in starter, average daily gain (ADG), hip width change, and starter intake linearly increased. In all grower trials, as starch concentration of dry feed increased, ADG, hip width change, and ADG/DM intake linearly increased; DM intake and DM intake/body weight were unaffected. In addition, the calves at 6 to 16 wk of age had greater digestibility of DM and crude protein with increasing starch concentration of dry feed. As indicated by meta-regression analysis, growth responses to starch concentration were influenced by metabolizable energy concentration in dry feed fed to the calves up to 16 wk of age. Changing starch from 23 to 43% on a DM basis (a typical range in the US industry) was predicted to increase ADG and hip width change by 5.8 and 5.0%, respectively, for calves at 0 to 8 wk of age and by 9.6 and 11.2%, respectively, for calves at 8 to 16 wk of age. Positive linear relationships between starch concentration of dry feed with DM digestibility, ADG, and hip width change reflect the importance of starch in the diets of young dairy calves.  相似文献   

16.
《Journal of dairy science》2019,102(12):11016-11025
Newborn Holstein male calves (n = 50) born on a single dairy farm were assigned randomly at birth to receive 3 feedings of 1.8 L of pooled maternal colostrum (MC) at 1, 6, and 12 h of age or 1 feeding of 500 g of a colostrum replacer reconstituted to 1.8 L at 1 h of age, followed by 2 feedings of 227 g of a commercial milk replacer (MR) reconstituted to 1.8 L at 6 and 12 h of age (CR). All feedings were administered by esophageal feeder. At 2 to 3 d of age, calves were transported to the experimental facility and assigned within colostrum group to receive 0.66 kg/d dry matter (DM) of MR to 39 d, and then 0.33 kg/d to 42 d (MRM) or 0.77 kg/d of MR DM to d 13, 1.03 kg/d for 22 d, and 0.51 kg/d for 7 d (MRH). The MR contained 25.8% crude protein and 17.6% crude fat (DM basis) and was based on whey proteins and lard as the primary fat source. Calf starter (21.7% crude protein, 15.7% neutral detergent fiber, 37.4% starch, DM basis) and water were available for ad libitum consumption throughout the 56-d study. Serum IgG and total protein were measured at 2 to 3 d of age. Intakes of MR and calf starter were monitored daily. Calf health and fecal scores were also monitored daily. Body weight was measured weekly, and hip width and body condition score were monitored every 2 wk. Digestion of DM, organic matter, crude protein, and ether extract were determined at 1 and 3 wk from 5 calves randomly selected within treatment and using chromic oxide as a digestibility marker added to the MR. Calves fed CR had lower serum IgG and total protein than calves fed MC. Also, calves fed CR grew more slowly, consumed less calf starter, and were less efficient to 56 d than calves fed MC. The number of days calves were treated with veterinary medications was higher when calves were fed CR. Calves fed MC-MRH gained more BW than other calves from 3 to 8 wk of age. Calves fed CR-MRH consumed less calf starter than other calves during wk 7 and 8. Digestion of nutrients at 1 and 3 wk of the study was unaffected by type of colostrum or level of MR fed and did not change from 1 to 3 wk. Over the first 2 mo of life, the calves fed MRH consumed less calf starter than calves fed MRM, but average daily gain or hip width change did not differ. One feeding of CR followed by 2 feedings of MR in the first 24 h likely reduced absorption of IgG from CR and contributed to differences in health and growth. Differences in animal performance observed in this study were unrelated to MR digestibility.  相似文献   

17.
《Journal of dairy science》2017,100(1):199-212
Our objective was to determine effects of feeding calves pelleted starters with microbially enhanced (fungi-treated) soy protein (MSP) in replacement of soybean meal (SBM) with different milk replacers (MR). Thirty-six Holstein calves (2 d old; 24 females, 12 males) in individual hutches were used in a 12-wk randomized complete block design study. Treatments were (1) MSP pellets with MR formulated for accelerated growth (28% crude protein, 18% fat; MSPA), (2) SBM pellets with MR formulated for accelerated growth (SBMA), and (3) MSP pellets with conventional MR (20% crude protein, 20% fat; MSPC). Pellets were similar except for 23% MSP or 23% SBM (dry matter basis). Pellets and water were fed ad libitum throughout the study. Feeding rates of MR on a dry matter basis were 0.37 kg twice daily during wk 1, 0.45 kg twice daily during wk 2 to 5, and 0.45 kg once daily during wk 6. Intakes were recorded daily. Body weights, frame size measurements, and jugular blood samples were collected 2 d every 2 wk at 3 h after the morning feeding. Fecal grab samples were collected 5 times per d for 3 d during wk 12 and then composited by calf for analysis of apparent total-tract digestibility of nutrients using acid detergent insoluble ash as an internal marker. Total and starter pellet dry matter intake were greatest for calves fed SBMA and least for MSPC. Calves had similar average daily gain among treatments, but there was a treatment by week interaction and during the last few weeks of the study calves on MSPC had less body weight compared with MSPA or SBMA. Gain-to-feed ratio was similar among treatments; however, there was a treatment by week interaction. Serum glucose was similar among treatments. Plasma urea nitrogen was greatest for calves fed MSPA and least for MSPC. Plasma concentrations of IGF-1 were greatest for calves fed SBMA. Plasma concentrations of triglycerides were greatest for calves fed MSPC. Plasma concentrations of β-hydroxybutyrate had a treatment by time interaction. Treatments had similar total-tract dry matter digestibility, but calves fed MSPC had greater crude protein digestibility than SBMA, with MSPA similar to both. Results demonstrated calves fed pelleted starters with MSP had maintained growth performance with less starter intake compared with SBM.  相似文献   

18.
Growth, age at weaning, fecal scores, and blood metabolites of young dairy calves were measured to determine the most effective method of lasalocid administration. Forty Holstein bull calves were blocked by date of birth and assigned randomly to one of four treatment groups: no lasalocid; lasalocid in starter; lasalocid in prestarter and starter; or lasalocid in milk, prestarter, and starter for a 12-wk period. Calves were fed milk twice daily until they consumed 227 g/d of prestarter, at which time the p.m. milk feeding was discontinued, and starter was offered for ad libitum intake as a mixture with the 227 g/d of prestarter. When total dry feed consumption reached 1.3% of birth weight, the calf was weaned. When the calf was 5 wk of age, the prestarter was discontinued. Daily gain tended to be greatest during the first 6 wk for the calves receiving lasalocid in milk, prestarter, and starter. These calves also were weaned with less variation in days to weaning. By wk 8 through 12, there were no differences in gain among the treatment groups.  相似文献   

19.
Ten bull calves (n = 5/diet) were cannulated at 3 wk of age and used in a 2 × 2 factorial design with repeated measures over time to compare rumen and whole-tract degradability of 2 calf starter diets and to describe an in situ technique for estimating ruminal degradability of diets in calves at different ages. Calves received milk replacer and 1 of 2 starter diets through wk 7. Mean birth weight was 38.7 ± 1.3 kg. Weaning occurred in wk 8, and calves received only starter (up to 4,500 g/d) through wk 15. Starter diets were a complete pellet (PEL; 42% starch, 13% neutral detergent fiber, NDF) or texturized feed (TEX; 31% starch, 22% NDF). Portions of each diet were dried and ground through a 2-mm screen, and 1.25 g was inserted into concentrate in situ bags (5 cm × 10 cm, 50-µm porosity). Each calf received duplicate bags of each diet for a total of 8 bags/calf (2 diets × 2 time points). All bags were inserted at the time of starter feeding. Half of the bags were removed at 9 h, and the other half were removed at 24 h. After removal from the rumen, bags were rinsed, dried (55°C), and composited by diet and by calf within week for NDF, nitrogen (N), and starch analyses. This process was repeated over 3 d during wk 5, 7, 9, 11, 13, and 15. Daily starter intake and total fecal excretion were recorded during the same 3-d periods. Diets, refusals, and feces were subsampled, dried, ground, composited by calf by week, and analyzed for NDF, N, and starch content. Apparent digestibility coefficients, total intake, and fecal excretion were calculated and analyzed with a mixed models procedure. Intake and fecal excretion of all measured nutrients increased from wk 5 through wk 15 of age and were greater for calves fed TEX, whereas the proportion of dry matter (DM), N, and starch apparently digested through the total tract decreased from wk 5 to 15 and was greater in calves fed PEL. Ruminal disappearance of DM, N, and starch after 9-h incubations increased linearly with age. Likewise, DM, NDF, and N disappearance after 24-h incubations also increased. Ruminal disappearance of DM and NDF was greater for PEL than for TEX. Ruminal disappearance was estimable for DM, NDF, N, and starch. In addition, changes over time and changes due to rumen environment were clearly demonstrated. Based on these data, there is potential to design specific rations and feed processing methods for calves based on their ability to utilize nutrients.  相似文献   

20.
The objective was to determine the relationships between early-life parameters [including average daily gain (ADG), body weight (BW), milk replacer intake, starter intake, and birth season] and the first-lactation performance of Holstein cows. We collected data from birth years 2004 to 2012 for 2,880 Holstein animals. Calves were received from 3 commercial dairy farms and enrolled in 37 different calf research trials at the University of Minnesota Southern Research and Outreach Center from 3 to 195 d. Upon trial completion, calves were returned to their respective farms. Milk replacer options included varying protein levels and amounts fed, but in the majority of studies, calves were fed a milk replacer containing 20% crude protein and 20% fat at 0.57 kg/calf daily. Most calves (93%) were weaned at 6 wk. Milk replacer dry matter intake, starter intake, ADG, and BW at 6 wk were 21.5 ± 2.2 kg, 17.3 ± 7.3 kg, 0.53 ± 0.13 kg/d, and 62.4 ± 6.8 kg, respectively. Average age at first calving and first-lactation 305-d milk yield were 715 ± 46.5 d and 10,959 ± 1,527 kg, respectively. We conducted separate mixed-model analyses using the REML model-fitting protocol of JMP (SAS Institute Inc., Cary, NC) to determine the effect of early-life BW or ADG, milk replacer and starter intake, and birth season on first-lactation 305-d milk, fat, and true protein yield. Greater BW and ADG at 6 wk resulted in increased first-lactation milk and milk component yields. Intake of calf starter at 8 wk had a significant positive relationship with first-lactation 305-d yield of milk and milk components. Milk replacer intake, which varied very little in this data set, had no effect on first-lactation 305-d yield of milk and milk components. Calves born in the fall and winter had greater starter intake, BW, and ADG at 8 wk. However, calves born in the summer had a higher 305-d milk yield during their first lactation than those born in the fall and winter. Improvements were modest, and variation was high, suggesting that additional factors not accounted for in these analyses affected first-lactation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号