首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using X-ray powder and single crystal diffraction, the crystal structures of the Nd(Ru0.6Ge0.4)2 and ErRuGe compounds were investigated. The compounds belong to the KHg2 and TiNiSi type structure, respectively.  相似文献   

2.
Structural studies were performed for the ternary RIr3B2 compounds (R=Ce and Pr) from as cast samples. The crystal structure of the ternary boride CeIr3B2 (CeCo3B2 structure type, space group P6/mmm, a=5.520(3) Å, c=3.066(2) Å, Z=1, V=80.91 Å3, ρx=15.154 g cm−3) was refined to R1=0.0470, wR2=0.1240 from single-crystal X-ray diffraction data. The new ternary boride PrIr3B2 was found to be isostructural with the CeIr3B2 compound. Its lattice parameters a=5.5105(2) Å, c=3.1031(1) Å were obtained from a Rietveld refinement of X-ray powder diffraction data.  相似文献   

3.
The crystal structure of sodium pentamolybdyl tetradiphosphate Nax(MoO)5(P2O7)4 has been determined from synchrotron diffraction data collected at 293 K on two microcrystals. The compound crystallizes in a monoclinic space group I 1 1 2/a (no. 15, setting 11), with unit cell parameters a = 22.905(3), b = 23.069(2), c = 4.8537(2) Å, γ = 90.641(9)° and a = 22.898(3), b = 23.056(2), c = 4.8551(2) Å, γ = 90.82(1)°, for crystals I and II, respectively. The structure is pseudo-tetragonal, and the crystals are pseudo-merohedrally twinned by 90° rotation around the c-axis. The structure closely resembles the previously reported Li-deintercalated Mo1.3OP2O7 [V.V. Lisnyak, N.V. Stus, P. Popovich, D.A. Stratiychuk, Ya. Filinchuk, V.M. Davydov, J. Alloys Compd. 360 (2003) 81–84]. Comparison of the two structures led us to conclude that the Mo2 and Mo3 clusters were erroneously identified in Mo1.3OP2O7. A revised structure of Mo1.3OP2O7 contains a fully occupied oxygen site instead of the 16% occupied Mo(2) site, thus the revised formulae for the Li-deintercalated compound is (MoO)5(P2O7)4. In both structures, the (MoO)5(P2O7)4 framework strongly resembles the one in the earlier reported Ag(MoO)5(P2O7)4, while the location of Na and Ag atoms differ.  相似文献   

4.
Ternary R3Pd4Ge4 samples (R=Nd, Eu, Er) were investigated by means of X-ray single crystal (four circle diffractometer Philips PW1100, MoK radiation) and powder diffraction (MX Labo diffractometer, CuK radiation). The Er3Pd3.68(1)Ge4 compound belongs to the Gd3Cu4Ge4 structure type, space group Immm, a=4.220(2) Å, b=6.843(2) Å, c=14.078(3) Å, R1=0.0484 for 598 reflections with Fo>4σ(Fo) from X-ray single crystal diffraction data. No ternary R3Pd4Ge4 compound when R is Nd or Eu was observed. The Nd and Eu containing samples appeared to be multiphase. Ternary phases observed in the Nd3Pd4Ge4 and Eu3Pd4Ge4 alloys and their crystallographic characteristics are the following: NdPd2Ge2, CeGa2Al2 structure type, space group I4/mmm, a=4.3010(2) Å, c=10.0633(2) Å (X-ray powder diffraction data); NdPd0.6Ge1.4, AlB2 structure type, space group P6/mmm, a=4.2305(2) Å, c=4.1723(2) Å (X-ray powder diffraction data); Nd(Pd0.464(1)Ge0.536(1))2, KHg2 structure type, space group Imma, a=4.469(2) Å, b=7.214(2) Å, c=7.651(3) Å, R1=0.0402 for 189 reflections with Fo>4σ(Fo) (X-ray single crystal diffraction data); Eu(Pd,Ge)2, AlB2 structure type, space group P6/mmm, a=4.311(2) Å, c=4.235(2) Å; EuPdGe, EuNiGe structure type, space group P21/c, and ternary compound with unknown structure (X-ray powder diffraction data).  相似文献   

5.
The crystal structure of a new ternary boride Ce2Ir5B2, space group , a=5.477(2) Å, c=31.518(5) Å, Z=6, V=818.79 Å, was refined down to R=0.0484, wR2=0.1211 from single crystal X-ray diffraction data. This is the first representative of a new structure type of intermetallic compounds (an ordered variant of the binary Er2Co7 compound). The structure of Ce2Ir5B2 is the stacking variant of the MgCu2- and CeCo3B2-type slabs and belongs to the structural series with the general formula R2+nM4+3nX2n (n=2).  相似文献   

6.
Results of a powder X-ray diffraction investigation of new ternary compounds are reported. The compounds Y6CoBi2 [a=0.8312(1) nm, c=0.4144(1) nm], Ho6CoBi2 [a=0.8246(2) nm, c=0.4095(1) nm], and Tm6CoBi2 [a=0.8155(2) nm, c=0.4066(1) nm] crystallize in the hexagonal Zr6CoAs2-type structure (space group P6b2m No. 189). The Zr6CoAs2-type structure is a superstructure of the Fe2P-type structure.  相似文献   

7.
Powder X-ray diffraction results and macroscopic magnetic properties of new ternary RRh5Ge3 compounds (R=Sm, Gd, Tb) are reported. The compounds SmRh5Ge3 (a=2.2744(4) nm, c=0.3888(1) nm), GdRh5Ge3 (a=2.2711(5) nm, c=0.3872(1) nm) and TbRh5Ge3 (a=2.2628(7) nm, c=0.3851(1) nm) crystallize in the hexagonal SmRh5Ge3-type structure (space group P63/m; No. 176). The GdRh5Ge3 and TbRh5Ge3 compounds are Curie–Weiss paramagnets down to 5 K.  相似文献   

8.
The structure of the ternary phase Co3Al8Ga, Pearson symbol oI96, space group Immm, a=12.0081(7) Å, b=7.5701(6) Å, c=15.394(1) Å is isotypic with Co2NiAl9. Powder diffraction data are reported for this ternary intermetallic compound. Using liquid quenching, the metastable pseudoternary decagonal phase d-Co(Al, Ga)3(m) was obtained in the aluminium-rich portion of the ternary system Co–Al–Ga. Gallium substitutes for aluminium atoms in the d-Co(Al, Ga)3(m) phase up to a mol fraction xGa=0.10. In the phase of the binary system Co–Al richest in aluminium, Co2Al9, the aluminium atomic positions can be occupied by gallium up to a gallium content of xGa=0.05.  相似文献   

9.
Crystals of Ba3NaRu2O9−δ (δ≈0.5) and Ba3(Na, R)Ru2O9−δ (R=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) were grown by an electrochemical method, and their crystallographic, magnetic, and electric properties were studied. All crystals have a hexagonal structure of space group P63mmc. Ba3NaRu2O9−δ and Ba3(Na, R)Ru2O9−δ (except Ce) have a negative asymptotic Curie temperature suggesting the existence of an antiferromagnetic order; however, they are paramagnetic at temperatures above 1.7 K. Ba3NaRu2O9−δ has an effective magnetic moment Peff of 0.91 μB, while Peff of Ba3(Na, R)Ru2O9−δ (except Ce) reflects the large free-ion moment of the rare earth ions. Ba3(Na, Ce)Ru2O9−δ shows peculiar magnetic behavior that differs from the magnetism of other Ba3(Na, R)Ru2O9−δ crystals. The resistivity of all crystals exhibits an activation-type temperature dependence with an activation energy in the range of 0.10.2 eV.  相似文献   

10.
Powder X-ray and neutron diffraction and magnetic measurements have been performed on R2RhSi3 (R=Ho and Er) compounds at low temperatures. The compounds crystallize in a derivative of the hexagonal AlB2-type structure. The crystal structure parameters have been refined on the basis of the X-ray and neutron diffraction patterns collected in the paramagnetic region. These compounds are antiferromagnets with Néel temperatures of 5.2 K for Ho2RhSi3 and 5 K for Er2RhSi3. Both compounds exhibit collinear magnetic structures, described by the propagation vector k=(1/2,0,0) for Ho2RhSi3 and k=(0,0,0) for Er2RhSi3. This magnetic order is stable in the temperature range between 1.5 K and the Néel temperature.  相似文献   

11.
A powder X-ray diffraction investigation of the new ternary compounds Zr6CoAs2-type R6MnSb2 and R6MnBi2 (R=Y, Lu, Dy, Ho) is reported. The compounds Ho6MnSb2 (a=0.8070(2) nm, c=0.4230(1) nm), Lu6MnSb2 (a=0.7930(1) nm, c=0.4173(1) nm), Y6MnBi2 (a=0.8242(1) nm, c=0.4292(1) nm), Dy6MnBi2 (a=0.8211(1) nm, c=0.4286(1) nm), Ho6MnBi2 (a=0.8164(1) nm, c=0.4250(1) nm) and Lu6MnBi2 (a=0.8019(2) nm, c=0.4185(1) nm) crystallize in the hexagonal Zr6CoAs2-type structure (space group P6b2m No. 189). The Zr6CoAs2-type structure is a superstructure of the Fe2P-type structure.  相似文献   

12.
The crystal structures of the Ag4HgGe2S7 and Ag4CdGe2S7 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.74546(8), b=0.68093(2), c=1.05342(3) nm, β=93.398(3)° for Ag4HgGe2S7 and a=1.74364(8), b=0.68334(3), c=1.05350(4) nm, β=93.589(3)° for Ag4CdGe2S7. Atomic parameters were refined in the isotropic approximation (RI=0.0761 and RI=0.0727, respectively).  相似文献   

13.
A new modification of the compound Ba3YB3O9, β phase, has been attained through solid phase transition from phase at 1125–1134 °C. β-Ba3YB3O9 crystallizes in the hexagonal space group with cell parameters a=13.0529(8) Å, c=9.5359(9) Å. The crystal structure of -Ba3YB3O9 has been determined from powder X-ray diffraction (XRD) data. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=8.8%, and Rwp=11.8% with Rexp=5.65%. In its structure, the isolated [BO3]3− anionic groups are parallel to each other and distributed layer upon layer along the c-axis. The Y atoms are six-coordinated by the O atoms to form octahedra. The result of IR spectrum confirmed the existence of [BO3]3− triangular groups.  相似文献   

14.
Yb3+ absorption and fluorescent emissions were investigated for NaYbP2O7 diphosphate single crystals. The interpretation of electronic energy level positions has been done by using the comparison of absorption and emission spectra with those of vibronic sideband energy positions from Raman and IR absorption spectroscopies. The Yb3+ energy levels scheme in this host was drawn. The decay time for infrared Yb3+ (5F5/2 excited state) fluorescence was in the range of 1–2 ms. The interest feature is leading to broad emission band at room temperature from 940 nm to 1100 nm, which seems of high interest for ultra-short laser pulse production.  相似文献   

15.
The subsolidus phase relations in the SrO–Ga2O3–B2O3 system were investigated. The system contains 10 binary compounds and two ternary compounds, and can be divided into 15 three-phase regions. The new ternary compound SrGaBO4 has two modifications (- and β-phases), both of which crystallize in the orthorhombic system but with different space groups.  相似文献   

16.
The electronic structure of Ni3Sn was calculated at ab initio levels for the crystal structure of the low-temperature modification of Ni3Sn refined upon data of single-crystal X-ray diffractometry (P63/mmc, a=5.2950(7), c=4.247(1) Å, R=0.0288). The calculations were made with the use of fixed Gaussian (CRYSTAL98 software) and energy-dependent (Stuttgart TB-LMTO-ASA software) basis sets. Difference electron charge density maps were analysed and compared with that of a hypothetical hcp Ni in order to understand bonding in Ni3Sn. It was found that bonding in Ni3Sn has multicentre character with Ni–Sn interaction stronger than Ni–Ni one.  相似文献   

17.
Monodisperse non-agglomerated Lu2O3:Eu3+ submicrometer spheres were obtained by the homogeneous precipitation technique with subsequent annealing for spheres crystallization. The morphological and structural parameters of the Lu2O3:Eu3+ crystalline spheres prepared were investigated by the electron microscopy methods, thermal analysis (TG-DTA), X-ray diffractometry (XRD), X-ray photoelectron (XPS) and FT-IR spectroscopy. The influence of the annealing temperature on the morphology and sphericity was shown. Eu3+-doped lutetium oxide spheres were characterized by effective luminescence under X-ray excitation in the λ = 575-725 nm range corresponding to 5D0 → 7FJ transitions (J = 0-4) of Eu3+ ions. It was shown that the X-ray luminescence efficiency of the Lu2O3:Eu3+ spherical phosphors prepared strongly depend on annealing temperature and dopant concentration.  相似文献   

18.
Sn(II)1.2(Nb(V)1.6Sn(IV)0.4)O6 pyrochlore precursor was oxidized at temperature of the range 573–973 K in 1% O2/Ar and O2 gases for various periods of time. Two kinds of novel metastable phases with a composition of Sn(IV)0.6(Nb(V)0.8Sn(IV)0.2)O3.6 could be synthesized. Further, the other novel metastable phase with the same composition was found as a phase contained. One of the metastable phases was the cubic κ-CeZrO4 related-type possessing the fluorite-related structure, which was formed by the cation diffusionless insertion of the oxygen atom into original oxygen vacant site of the pyrochlore-type structure. Another was an orthorhombic α-PbO2 related-type possessing a cation ordered arrangement unlike a well known NiWO4 structure. The other was the rutile related-type possessing a cation ordered arrangement. Appearance of the two latter metastable phases could be attributed to the displacement of the oxygen stacking in the κ-CeZrO4 related-type phase without cation redistributions. The appearance mechanisms were analogous to the well known transformations for AX2 compounds among rutile-type, α-PbO2-type, and fluorite-type phases under high pressure and its release. The dependence of the appearance of these novel metastable phases on oxygen partial pressure and temperature has been discussed in terms of the driving forces and energy barriers for reactions.  相似文献   

19.
Neutron diffraction data show that PrMn0.5Sn1.83 has a defect CeNiSi2-type crystal structure and orders antiferromagnetically below TN=16 K. The Pr magnetic moments are coupled antiferromagnetically according to the τ6 mode.  相似文献   

20.
0.99(Bi0.5Na0.5TiO3)-0.01(SrNb2O6) was prepared by simple solid state reaction route. Material stabilized in rhombohedral perovskite phase with lattice constants a = 3.9060 Å, α = 89.86° and ah = 5.4852 Å, ch = 6.7335 Å for hexagonal unit cells. Density of material was found 5.52 gm/cm3 (92.9% of theoretical one) in the sample sintered at 950 °C. The temperature dependent dielectric constant exhibits a broad peak at 538 K (?m = 2270) at 1 kHz that shows frequency dependent shifts toward higher temperature - typical relaxor behavior. Modified Curie-Weiss law was used to fit the dielectric data that exhibits almost complete diffuse phase transition characteristics. The dielectric relaxation obeys the Vogel-Fulcher relationship with the freezing temperature 412.4 K. Significant dielectric dispersion is observed in low frequency regime in both components of dielectric response and a small dielectric relaxation peak is observed. Cole-Cole plots indicate polydispersive nature of the dielectric relaxation; the relaxation distribution increases with increase in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号