首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Escherichia coli, the origin of DNA replication, oriC, becomes transiently hemimethylated at the GATC sequences immediately after initiation of replication and this hemimethylated state is prolonged because of its sequestration by a fraction of outer membrane. This sequestration is dependent on a hemimethylated oriC binding protein such as SeqA. We previously isolated a clone of phage lambda gt11 called hobH, producing a LacZ fusion protein which recognizes hemimethylated oriC DNA. Very recently, Thaller et al. (FEMS Microbiol. Lett. 146 (1997) 191-198) found that the same DNA segment encodes a non-specific acid phosphatase, and named the gene aphA. We show here that the interruption of the aphA reading frame by kanamycin resistance gene insertion, abolishes acid phosphatase (NAP) activity. Interestingly, in the membrane of the null mutant, the amount of SeqA protein is about six times higher than that in the parental strain, suggesting the existence of a regulatory mechanism between SeqA and NAP expression.  相似文献   

2.
3.
The binding of hemimethylated oriC to Escherichia coli membranes has been implicated in the prevention of premature reinitiation at newly replicated chromosomal origins in a reaction that involves the SeqA protein. We describe the resolution of the membrane-associated oriC-binding activity into two fractions, both of which are required for the high-affinity binding of hemimethylated oriC. The active component in one fraction is identified as SeqA. The active component of the second fraction is a previously undescribed protein factor, SeqB. The reconstituted system reproduced the salient characteristics of the membrane-associated binding activity, suggesting that the membrane-associated oriC-binding machinery of E. coli is likely to be a multiprotein system that includes the SeqA and SeqB proteins.  相似文献   

4.
In vivo studies suggest that the Escherichia coli SeqA protein modulates replication initiation in two ways: by delaying initiation and by sequestering newly replicated origins from undergoing re-replication. As a first approach towards understanding the biochemical bases for these effects, we have examined the effects of purified SeqA protein on replication reactions performed in vitro on an oriC plasmid. Our results demonstrate that SeqA directly affects the biochemical events occurring at oriC. First, SeqA inhibits formation of the pre-priming complex. Secondly, SeqA can inhibit replication from an established pre-priming complex, without disrupting the complex. Thirdly, SeqA alters the dependence of the replication system on DnaA protein concentration, stimulating replication at low concentrations of DnaA. Our data suggest that SeqA participates in the assembly of initiation-competent complexes at oriC and, at a later stage, influences the behaviour of these complexes.  相似文献   

5.
DnaA protein of Escherichia coli is a sequence-specific DNA-binding protein required for the initiation of DNA replication from the chromosomal origin, oriC. It is also required for replication of several plasmids including pSC101, F, P-1, and R6K. A collection of monoclonal antibodies to DnaA protein has been produced and the primary epitopes recognized by them have been determined. These antibodies have also been examined for the ability to inhibit activities of DNA binding, ATP binding, unwinding of oriC, and replication of both an oriC plasmid, and an M13 single-stranded DNA with a proposed hairpin structure containing a DnaA protein-binding site. Replication of the latter DNA is dependent on DnaA protein by a mechanism termed ABC priming. These studies suggest regions of DnaA protein involved in interaction with DnaB protein, and in unwinding of oriC, or low-affinity binding of ATP.  相似文献   

6.
Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome. The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact and functional oriC sequence. The seqA2 mutation was found to overcome the incompatability phenotype by increasing the cellular oriC copy number 3-fold thereby allowing minichromosomes to coexist with the chromosome. The replication pattern of a wild-type strain with multiple integrated minichromosomes in the oriC region of the chromosome, led to the conclusion that initiation of DNA replication commences at a fixed cell mass, irrespective of the number of origins contained on the chromosome.  相似文献   

7.
Using immunofluorescence microscopy, we have found that SeqA protein, a regulator of replication initiation, is localized as discrete fluorescent foci in E. coli wild-type cells. Surprisingly, SeqA foci were observed also in an oriC deletion mutant. Statistical analysis revealed that a SeqA focus is localized at midcell in newborn cells. The SeqA focus is duplicated and tethered at midcell until an FtsZ ring is formed. Subsequently, these foci migrate in opposite directions toward cell quarter sites and remain tethered there until the cell divides. The cell cycle-dependent bidirectional migration of SeqA-DNA complexes is quite different from the migration pattern of oriC Dna copies. MukB protein is required for correct localization of SeqA complexes by an unknown mechanism.  相似文献   

8.
In an in vitro assay, the oriC DNA has been shown to bind to the outer membrane fraction only when it is hemimethylated (G.B. Ogden et al., Cell, 54, 127-135,1988). In this report, however, we demonstrated that a significant amount of the oriC DNA was recovered from the cells just before initiation with the oriC DNA being fully methylated. Formation of this preinitiation oriC-membrane complex and following initiation of chromosome replication were strongly inhibited by novobiocin, a DNA gyrase B subunit inhibitor, which reduced the superhelicity of the reporter plasmid in the cells. On the other hand, both reactions proceeded in the presence of nalidixic acid, a DNA gyrase A subunit inhibitor, which did not have the effect of reducing the superhelicity. These results suggest that the negative superhelicity of the DNA is required for preinitiation oriC-membrane complex formation and following initiation event of replication.  相似文献   

9.
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.  相似文献   

10.
The microbicidal myeloperoxidase (MPO)-H2O2-chloride system strongly inhibits Escherichia coli DNA synthesis. Also, cell envelopes from MPO-treated E. coli cells lose their ability to interact with hemimethylated DNA sequences of oriC, the chromosomal origin of replication, raising the prospect that suppression of DNA synthesis involves impairment of oriC-related functions (H. Rosen, et al. Proc. Natl. Acad. Sci. USA, 87:10048-10052, 1990). To evaluate whether origin-specific DNA sequences play a role in the MPO effect on E. coli DNA synthesis, plasmid DNA replication was compared to total (chromosomal) DNA replication for six plasmids with three distinct origins of replication. Plasmid pCM700 replication, replicating from oriC, was as sensitive to MPO-mediated inhibition as was total (chromosomal) DNA replication. A regression line describing this relationship had a slope of 0.90, and the r2 was 0.89. In contrast, the replication activities of three of four non-oriC plasmids, pUC19, pACYC184, and pSC101, demonstrated significant early resistance to inhibition by MPO-derived oxidants. The exception to this resistance pattern was plasmid pSP102, which has an origin derived from P1 phage. pSP102 replication declined similarly to that of total DNA synthesis. The regression line for pSP102 replication versus total DNA synthesis had a slope of 0.95, and the r2 was 0.92. The biochemical requirements for P1-mediated replication are strikingly similar to those for oriC-mediated replication. It is proposed that one of these requirements, common to oriC and the P1 origin but not critical to the replication of the other non-oriC plasmids, is an important target for MPO-mediated oxidations that mediate the initial decline in E. coli chromosomal DNA synthesis.  相似文献   

11.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

12.
13.
Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation.  相似文献   

14.
DnaA protein and the Escherichia coli chromosomal origin (oriC) form an initial complex at an early stage in the initiation of DNA replication. We have used electron microscopy to determine which structure among the several formed in the reconstitution of this multicomponent system is the replicatively active complex. One distinctive structure could be correlated with activity and localized to oriC, whilst several others could not. Formation of an open complex in the next stage of initiation was accompanied by the presence of a structure similar in size and shape to that of the functional initial complex. Whereas the initial complex was observed with either ATP or the ADP-forms of DnaA protein, only the ATP-form was effective in producing the open complex. Mutagenesis of several DNA sequence elements in oriC, known to be important for replication, was employed to determine the effects of these alterations on formation of the initial complex. As judged by electron microscopy and by functional assays, the region containing the four 9-mer dnaA boxes proved to be essential for the formation of the initial complex, while the three contiguous AT-rich 13-mers, known sites for opening of oriC, were not.  相似文献   

15.
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

16.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, is activated by binding to ATP in vitro. We introduced site-directed mutations into two amino acids of the protein conserved among various ATP-binding proteins and examined functions of the mutated DnaA proteins, in vitro and in vivo. Both mutated DnaA proteins (Lys-178 --> Ile or Asp-235 --> Asn) lost the affinity for both ATP and ADP but did maintain binding activity for oriC. Specific activities in an oriC DNA replication system in vitro were less than one-tenth those of the wild-type protein. Assay of the generation of oriC sites sensitive to P1 nuclease, using the mutated DnaA proteins, revealed a defect in induction of the duplex opening at oriC. On the other hand, expression of each mutated DnaA protein in the temperature-sensitive dnaA46 mutant did not complement the temperature sensitivity. We suggest that Lys-178 and Asp-235 of DnaA protein are essential for the activity needed to initiate oriC DNA replication in vitro and in vivo and that ATP binding to DnaA protein is required for DNA replication-related functions.  相似文献   

17.
The Spo0J protein of Bacillus subtilis is required for normal chromosome segregation and forms discrete subcellular assemblies closely associated with the oriC region of the chromosome. Here we show that duplication of Spo0J foci occurs early in the DNA replication cycle and that this requires the initiation of DNA replication at oriC but not elongation beyond the nearby STer sites. Soon after duplication, sister oriC/Spo0J foci move rapidly apart to achieve a fixed separation of about 0.7 microm, reminiscent of the segregation of eukaryotic chromosomes on the mitotic spindle. The magnitude of the fixed separation distance may explain how chromosome segregation is kept in close register with cell growth and the initiation mass for DNA replication. It could also explain how segregation can proceed accurately in the absence of cell division. The kinetics of focal separation suggest that one role of Spo0J protein may be to facilitate formation of separate sister oriC complexes that can be segregated.  相似文献   

18.
In vitro, anionic phospholipids can reactivate inactivated DnaA protein, which is essential for initiation of DNA replication at the oriC site of Escherichia coli [Sekimizu, K. & Kornberg, A. (1988) J. Biol. Chem. 263, 7131-7135]. Mutations in the pgsA gene (encoding phosphatidylglycerophosphate synthase) limit the synthesis of the major anionic phospholipids and lead to arrest of cell growth. We report herein that a mutation in the rnhA gene (encoding RNase H) that bypasses the need for the DnaA protein through induction of constitutive stable DNA replication [Kogoma, T. & von Meyenburg, K. (1983) EMBO J. 2, 463-468] also suppressed the growth arrest phenotype of a pgsA mutant. The maintenance of plasmids dependent on an oriC site for replication, and therefore DnaA protein, was also compromised under conditions of limiting anionic phospholipid synthesis. These results provide support for the involvement of anionic phospholipids in normal initiation of DNA replication at oriC in vivo by the DnaA protein.  相似文献   

19.
Coupling of leading- and lagging-strand DNA synthesis at replication forks formed at Escherichia coli oriC has been studied in vitro using a replication system reconstituted with purified proteins. At low concentrations of primase (8 nM), the major replication products were multigenome-length molecules, generated by a rolling circle-type mechanism, and unit-length molecules. Rolling circle DNA replication was inhibited at high concentrations of primase (80 nM) and the major replication products were half-unit-length leading strands and a distinct population of short Okazaki fragments. At low primase concentrations, an asymmetric mode of DNA synthesis occurred. Each strand was made independently and initiation could occur outside of oriC. At high primase concentrations, initiation occurred exclusively at oriC and two coupled replication forks proceeded bidirectionally around the plasmid. Presumably, at low concentrations of primase, DnaB (the replication fork helicase) unwound the plasmid DNA before replication forks could form, leading to initiation at sites other than oriC. On the other hand, high concentrations of primase resulted in successful capture of the helicase leading to the formation at oriC of coupled replication forks capable of coordinated leading- and lagging-strand synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号