首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
《Catalysis communications》2007,8(11):1829-1833
In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to study the reaction mechanism of the formate adsorbed species with ethanol to form the ethyl formate on Cu/ZnO catalyst surface in a novel low-temperature methanol synthesis process. The results indicate that the formate adsorbed species were firstly formed by CO/CO2/H2 adsorbed on Cu/ZnO catalyst, followed by rapid reaction with ethanol to form ethyl formate. It was found that the species reacted with formate adsorbed species were ethanol in gas phase rather than adsorbed ethoxy species. The reaction of the adsorbed formate species with ethanol on Cu/ZnO catalyst surface proceeded according to Rideal-type mechanism, not Langmuir–Hinshelwood mechanism.  相似文献   

2.
Selenium, along with mercury and halides, represents one of the most volatile trace metallic emissions from coal‐fired combustors and utility boilers. This study investigates the potential of activated carbon in capturing gas phase selenium species in the low temperature range (125°C to 250°C) and elucidates the mechanism of interaction between selenium species and activated carbon. Selenium dioxide is chosen as the representative selenium species and experimental investigations are carried out in a differential bed reactor to illustrate the mechanism of SeO2 and carbon Interaction, Activated carbons with different structural properties are studied as adsorbents for selenium dioxide capture at low temperature. The capture mechanism is found to involve both physical and chemical adsorption in the low temperature range. At 125°C, about 1.5 wt% of selenium is captured at equillbrium. Carbon surface analyses and XPS studies confirm the presence of both elemental and oxide forms of selenium on the surface suggesting partial reduction of selenium dioxide to elemental selenium at carbon surface.  相似文献   

3.
The coverages and surface lifetimes of copper-bound formates on Cu/SiO2 catalysts, and the steady-state rates of reverse water-gas shift and methanol synthesis have been measured simultaneously by mass (MS) and infrared (IR) spectroscopies under a variety of elevated pressure conditions at temperatures between 140 and 160 °C. DCOO lifetimes under steady state catalytic conditions in CO2:D2 atmospheres were measured by 12C–13C isotope transients (SSITKA). The values range from 220 s at 160 °C to 660 s at 140 °C. The catalytic rates of both reverse water gas shift (RWGS) and methanol synthesis are ~100-fold slower than this formate removal rate back to CO2 + 1/2 H2, and thus they do not significantly influence the formate lifetime or coverage at steady state. The formate coverage is instead determined by formate’s rapid production/decomposition equilibrium with gas phase CO2 + H2. The results are consistent with formate being an intermediate in methanol synthesis, but with the rate-controlling step being after formate production (for example, its further hydrogenation to methoxy). A 2–3 fold shorter life time (faster decomposition rate) was observed for formate under reactions conditions, with both D2 and CO2 present, than in pure Ar or D2 + Ar alone. This effect, due in part to the effects of the coadsorbates produced under reaction conditions, illustrates the importance of using in situ techniques in the study of catalytic mechanisms. The carbon which appears in the methanol product spends a longer time on the surface than the formate species, 1.8 times as long at 140 °C. The additional delay on the surface is attributed in part to readsorption of methanol on the catalyst, thus obscuring the mechanistic link between formate and methanol.  相似文献   

4.
The nature of the pivotal intermediate during the synthesis of methanol from CO2/H2, in the presence of ZnO/ZrO2 aerogel catalyst is envisaged. The kinetic studies performed using in situ FTIR spectroscopy of the species formed on the surface of the catalyst in the absence and in the presence of hydrogen show that the initial reactive adsorbed species formed from C02 gas is the unidentate carbonate species. Its hydrogenation into the formate species is much faster than the hydrogenation of the formate species into methoxyl species. The comparison is based on a quantitative measurement of the rate constant of the hydrogenation of the various species. The results explain that during the C02/H2 reaction only formate and methoxyl species are observed.  相似文献   

5.
The catalytic performances of supported Group 810 metal (Co, Ni, Ru, Pd, Ir and Pt) catalysts for steam reforming of methanol, CH3OH + H2O CO2 + 3H2, and dehydrogenation of methanol to methyl formate, 2CH3 OH HCOOCH3 + 2H2, are markedly affected by the kinds of supports as well as the metals used. The selectivity for steam reforming and the formation of methyl formate was markedly improved when Pd or Pt were supported on ZnO, In2O3 and Ga2O3. The combined results of temperature-programmed reduction, XRD, XPS and AES revealed that Pd-Zn, Pd-In, Pd-Ga, Pt-Zn, Pt-In and Pt-Ga alloys were formed upon reduction. Over the catalysts having an alloy phase, the reactions proceeded selectively, whereas over the catalysts having a metallic phase, methanol was decomposed to carbon monoxide and hydrogen predominantly. It was shown that the reactivity of formaldehyde intermediate over the Pd and Pt alloys was markedly different from that over metallic Pd and Pt. Over Pd and Pt alloys, aldehyde species were stabilized and transformed into carbon dioxide and hydrogen or methyl formate by nucleophilic addition of water or methanol, respectively. By contrast, over metallic Pd and Pt, aldehyde species were rapidly decarbonylated to carbon monoxide and hydrogen.  相似文献   

6.
A variety of activated charcoals have been found to catalyse a previously unknown, highly selective, reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum at ≈170 °C where the selectivity is consistent with the stoichiometry: COCl2 + CH2OCH2Cl2 + CO2. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgene and forms rapidly above 100 °C in co-adsorption/desorption experiments. It decomposes rapidly at ≈170 °C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.  相似文献   

7.
The interaction of methanol with a copper/silica catalyst at 373 and 523K under reducing, oxidising and inert carrier gas flows has been studied. Under all conditions there is retained material associated solely with the copper. In general the retained species is adsorbed methanol/methoxy; only over an oxidised catalyst after treatment at 523K is there no evidence for adsorbed methanol/methoxy. Desorption of carbon dioxide is associated with an up-take in dioxygen indicating oxidation of a surface species, probably formate. After laydown under reducing or inert gas flow, the copper does not re-oxidise under the TPO gas flow, even at temperatures >673K indicating that material is still retained by the copper. Bulk re-oxidation of the reduced catalyst in the absence of retained species is rapid at 293K. Under oxidising conditions at 523K there is no evidence for adsorbed methanol/methoxy on the surface of the copper; in this case the retained species may be more akin to a carbonate.  相似文献   

8.
The interaction of carbon dioxide with polycrystalline copper has been studied by radiolabelling techniques using {14-C} carbon dioxide, and by temperature programmed desorption. It is showninter alia, that: carbon dioxide is weakly adsorbed at the clean surface; that this acts as precursor which, on activation, produces adsorbed carbon monoxide and surface oxygen; and that this oxidised copper surface then adsorbs carbon dioxide more strongly yielding a state which can be hydrogenated first to formate, and thereafter to methanol.  相似文献   

9.
High-temperature reduction (HTR) of palladium catalysts supported on some reducible oxides, such as Pd/CeO2, and Pd/TiO2 catalysts, led to a strong metal-support interaction (SMSI), which was found to be the main reason for their high and stable activity for methanol synthesis from hydrogenation of carbon dioxide. But low-temperature-reduced (LTR) catalysts exhibited high methane selectivity and were oxidized to PdO quickly in the same reaction. Besides palladium, platinum exhibited similar behavior for this reaction when supported on these reducible oxides. Mechanistic studies of the Pd/CeO2 catalyst clarified the promotional role of the SMSI effect, and the spillover effect on the HTR Pd/CeO2 catalyst. Carbon dioxide was decomposed on Ce2O3, which was attached to Pd, to form CO and surface oxygen species. The carbon monoxide formed was hydrogenated to methanol successively on the palladium surface while the surface oxygen species was hydrogenated to water by spillover hydrogen from the gas phase. A reaction model for the hydrogenation of carbon dioxide was suggested for both HTR and LTR Pd/CeO2 catalysts. Methanol synthesis from syngas on the LTR or HTR Pd/CeO2 catalysts was also conducted. Both alcohol and hydrocarbons were formed significantly on the HTR catalyst from syngas while methanol formed predominantly on the LTR catalyst. Characterization of these two catalysts elucidated the reaction performances.  相似文献   

10.
《应用陶瓷进展》2013,112(5):197-202
Abstract

The reaction between titanium dioxide and carbon in a flowing helium stream was studied by scanning electron microscopy and X-ray diffraction. Experimental results indicate that the order of phase transformations during the reaction was TiO2(rutile) → Ti4O7 → Ti3O5 → Ti2O3 → TiO → TiC. A mechanism is proposed to explain the overall reaction. The reaction rate was found to increase with increasing sample thickness, reaction temperature, and initial bulk density and with decreasing helium flowrate, molar ratio of TiO2/C, and grain size of titanium dioxide.  相似文献   

11.
《Journal of Catalysis》2007,245(2):326-337
Metal/ceria catalysts are receiving great interest for reactions involving steam conversion, including CO for low-temperature water–gas shift, and the conversion of chemical carriers of hydrogen, among them methanol, and ethanol. The mechanism by which ROH model reagents are activated on the surface of the Pt/partially reduced ceria catalyst was explored using a combination of reaction testing and infrared spectroscopy. In this particular investigation, the activation and turnover of ethanol were explored and compared with previous investigations of methanol steam reforming and low-temperature water–gas shift under H2-rich conditions, where the surface of ceria is in a partially reduced state. Under these conditions, activation of ethanol was found to proceed by dissociative adsorption at reduced defect sites on ceria (i.e., Ce surface atoms in the Ce3+ oxidation state), yielding an adsorbed type II ethoxy species and an adsorbed H species, the latter identified to be a type II bridging OH group. In the presence of steam, the ethoxy species rapidly undergoes molecular transformation to an adsorbed acetate intermediate by oxidative dehydrogenation. This is analogous to the conversion of type II methoxy species to formate observed in previous investigations of methanol steam reforming. In addition, although formate then decomposes in steam to CO2 and H2 during methanol steam reforming, in an analogous pathway for ethanol steam reforming, the acetate intermediate decomposes in steam to CO2 and CH4. Therefore, further H2 production requires energy-intensive activation of CH4, which is not required for methanol conversion over Pt/ceria.  相似文献   

12.
负载型铟基催化剂二氧化碳加氢动力学研究   总被引:2,自引:1,他引:1       下载免费PDF全文
曹晨熙  陈天元  丁晓旭  黄海  徐晶  韩一帆 《化工学报》2019,70(10):3985-3993
探讨了载体对铟基催化剂上CO2加氢动力学的影响。通过浸渍法制备了不同载体的负载型In基催化剂,仅ⅣB族元素(Ti,Zr,Hf)氧化物负载的In基催化剂表现出明显的CO2加氢活性,其中In1/HfO2和In1/ZrO2催化剂具有较高的甲醇选择性,而In1/TiO2催化剂主要起催化逆水气变换反应的作用。通过稳态动力学、高压原位漫反射红外和程序升温实验等动力学手段,证明反应条件下In1/ZrO2和In1/HfO2上的关键表面反应中间体是甲酸盐与甲氧基,甲醇主要通过表面甲酸盐的逐步加氢生成。In1/HfO2具有最强的氢解离与加氢能力,因此最有利于甲醇合成。In1/TiO2在CO2加氢中表面无明显含碳中间物种,高CO选择性可能与界面氧空缺位点促进redox循环以及甲酸盐中间体分解相关。  相似文献   

13.
In the current work, molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively. This comparison was carried out because it has relevance to the recovery of methane gas from natural gas hydrate reservoirs by simultaneously sequestering a greenhouse gas like CO2. The seed crystal of carbon dioxide and methane hydrate was allowed to grow from a super-saturated mixture of carbon dioxide or methane molecules in water respectively. Two different concentrations (1:6 and 1:8.5) of CO2/CH4 molecules per water molecule were chosen based on gas–water composition in hydrate phase. The molecular level growth as a function of time was investigated by all atomistic molecular dynamics simulation under suitable temperature and pressure range which was well above the hydrate stability zone to ensure significantly faster growth kinetics. The concentration of CO2 molecules in water played a significant role in growth kinetics, and it was observed that maximizing the CO2 concentration in the aqueous phase may not result in faster growth of CO2 hydrate. On the contrary, methane hydrate growth was independent of methane molecule concentration in the aqueous phase. We have validated our results by performing experimental work on carbon dioxide hydrate where it was seen that under conditions appropriate for liquid CO2, the growth for carbon dioxide hydrate was very slow in the beginning.  相似文献   

14.
The kinetic experiments of Fischer-Tropsch synthesis (FTS) over an industrial Fe-Cu-K catalyst are carried out in a micro-fixed-bed reactor under the conditions as follows: temperature of 493-542 K, pressure of 10.9-30.9 bar, H2/CO feed ratio of 0.98-2.99, and space velocity of 4000-10?000 h−1. The effects of secondary reactions of olefins are investigated by co-feeding C2H4 and C3H6. A detailed kinetics model taking into account the increasingly proven evidence of the olefin re-adsorption mechanism is then proposed. In this model, different sites are assumed for FTS reactions and water gas shift (WGS) reaction, respectively. Rate expressions for FTS reactions are based on the carbide polymerisation mechanism, in which olefin re-adsorption is considered to be a reverse step of olefin desorption reaction. Rate expression for WGS reaction is based on the formate mechanism. An integral reactor model considering both FTS and WGS kinetics is used to describe the reaction system, and the simultaneous estimation of kinetic parameters is conducted with non-linear regression procedure. The optimal model shows that the rate determining steps in FTS reactions proceed via the desorption of hydrocarbon products and the adsorption of CO and the slowest step in WGS reaction is the desorption of gaseous carbon dioxide via formate intermediate species. The activation energies of FTS reactions and WGS reaction are in good agreement with literature values.  相似文献   

15.
Doping Pt/ceria catalysts with the Group 1 alkali metals was found to lead to an important weakening of the C–H bond of formate and methoxy species. This was demonstrated by a shift to lower wavenumbers of the formate and methoxy ν(CH) vibrational modes by DRIFTS spectroscopy. Li and Na-doped Pt/ceria catalysts were tested relative to the undoped catalyst for low temperature water–gas shift and methanol steam reforming using a fixed bed reactor and exhibited higher catalytic activity. Steaming of formate and methoxy species pre-adsorbed on the catalyst surface during in-situ DRIFTS spectroscopy suggested that the species were more reactive for dehydrogenation steps in the catalytic cycle for the Li and Na-doped catalysts relative to undoped Pt/ceria. However, with increasing atomic number over the series of alkali-doped catalysts, the stability of a fraction of the carbonate species was found to increase. This was observed during TPD-MS measurements of the adsorbed CO2 probe molecule by a systematic increase of a high temperature peak for a fraction of the CO2 desorbed. This result indicates that alkali-doping is an optimization problem—that is, while improving the dehydrogenation rates of methoxy and formate species, the carbonate intermediate stability increases, making it difficult to liberate the CO2. Infrared spectroscopy results of CO adsorbed on Pt and ceria suggest that the alkali dopant is located on, and electronically modifies, both the Pt and ceria components. The results not only lend further support to the role that methoxy and formate species play as intermediates in the catalytic mechanisms, but also provide a path forward for improving rates by means other than resorting to higher noble metal loadings.  相似文献   

16.
刘文萱  张嘉毅  陆奇  张皓晨 《化工学报》2021,72(12):6262-6273
系统研究了不同双金属中心催化剂催化二氧化碳电化学还原制备甲酸盐。借助机器学习,确定了反应中心金属原子序数、电负性和电离能等特征对双金属中心催化剂表面二氧化碳还原具有主要的影响。基于这些特征,通过高通量机器学习快速预测了105种双金属中心催化剂二氧化碳电还原制甲酸盐及其主要竞争反应的Gibbs自由能变,筛选出29种双金属中心催化剂更倾向于二氧化碳还原得到甲酸盐,是潜在的转化二氧化碳为甲酸盐的高性能催化材料。运用类似的方法预测了105种双金属中心催化剂表面二氧化碳还原中间体的结构,发现中间体吸附能与其吸附构型具有显著的相关关系。  相似文献   

17.
Polycrystalline copper was used as catalyst for the selective oxidation of methanol under stoichiometric reaction conditions for oxidehydrogenation. Temperature- programmed reaction spectroscopy (TPRS) revealed a broad temperature range of reactivity with two distinct maxima for the production of formaldehyde. Phase analysis with thermogravimetry (TG) and powder X-ray diffraction (XRD) under in situ conditions showed that a phase change occurred between the two maxima for formaldehyde production from bulk Cu2O to metallic copper. Strongly adsorbed methoxy and formate were detected by X-ray photoelectron spectroscopy (XPS) after prolonged catalytic use. A sub-surface oxygen species and surface OH were identified by XPS. A region of oscillatory behaviour was found in the temperature interval between 623 and 710 K. Multicomponent gas analysis of the reaction products with an ion-molecule reaction mass spectrometer (IMR-MS) allowed to derive a reaction sequence in which both methoxy and formate are necessary as surface species. The most selective state of the catalyst for oxidehydrogenation is the co-adsorption system methanol-oxygen. Oxidation of the surface by excess molecular oxygen leads to total oxidation. The catalyst is finally reduced by excess methanol into an inactive pure metallic form. Sub-surface oxygen segregates to the surface and initiates the activity again by enhancing the sticking coefficient for gas phase species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In this study, the enhancement of physical absorption of carbon dioxide by Fe3O4‐water nanofluid under the influence of AC and DC magnetic fields was investigated. Furthermore, a gas‐liquid mass transfer model for single bubble systems was applied to predict mass transfer parameters. The coated Fe3O4 nanoparticles were prepared using co‐percipitation method. The results from characterization indicated that the nanoparticles surfaces were covered with hydroxyl groups and nanoparticles diameter were 10–13 nm. The findings showed that the mass transfer rate and solubility of carbon dioxide in magnetic nanofluid increased with an increase in the magnetic field strength. Results indicated that the enhancement of carbon dioxide solubility and average molar flux gas into liquid phase, particularly in the case of AC magnetic field. Moreover, results demonstrated that mass diffusivity of CO2 in nanofluid and renewal surface factor increased when the intensity of the field increased and consequently diffusion layer thickness decreased. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2176–2186, 2017  相似文献   

19.
The aim of the current research project was to explore the possibilities of combining pressurized carbon dioxide with hot melt extrusion of polyvinylpyrrolidone-co-vinyl acetate 64, Eudragit® E100 and ethylcellulose 20 cps, to evaluate the ability of the pressurized gas to act as a temporary plasticizer as well as to produce a foamed polymeric material. Pressurized carbon dioxide was injected into a Leistritz Micro 18 intermeshing co-rotating twin-screw melt extruder using an ISCO 260D syringe pump. The physicochemical characteristics of the polymers before and after injection of carbon dioxide were evaluated using MDSC, dissolution measurements, specific surface area measurements, porosity, dynamic vapour sorption and microscopy. An extruder set up and screw configuration were configured and optimized for injection of pressurized CO2. Carbon dioxide acted as plasticizer for all three polymers, reducing the processing temperature during the hot melt extrusion process. The specific surface area and the porosity of the polymers was increased after treatment with carbon dioxide, resulting in enhanced dissolution. The macroscopic morphology was changed to a foam-like structure due to expansion of the carbon dioxide at the extrusion die. This resulted in improved milling efficiency.  相似文献   

20.
《Fuel》2002,81(11-12):1619-1624
In situ FTIR spectroscopy was used to identify the adsorbed species and the intermediates during methanol dehydrogenation over Cu/SiO2 catalyst, and a schematic reaction network was proposed. Methoxy species on copper, which were derived from adsorbed methanol, dehydrogenated into formaldehyde. Then several competitive pathways took place. The adsorbed formaldehyde could desorb to the gas phase, or react with another adsorbed methoxy group to form methyl formate, and/or undergo further dehydrogenation to CO and H2. Carbon monoxide formed from the decomposition first adsorbed on high-index planes of copper, and then on low-index planes as the reaction progressed. With the increase of temperature, the concentration of formaldehyde and CO in gas phase increased, and that of methyl formate decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号