首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Ishitani T  Ohya K 《Scanning》2003,25(4):201-209
Monte Carlo simulations have been carried out to compare the spatial spreads of secondary electron (SE) information in scanning ion microscopy (SIM) with scanning electron microscopy (SEM). Under Ga ion impacts, the SEs are excited by three kinds of collision-partners, that is, projectile ion, recoiled target atom, and target electron. The latter two partners dominantly contribute to the total SE yield gamma for the materials of low atomic number Z2. For the materials of high Z2, on the other hand, the projectile ions dominantly contribute to gamma. These Z2 dependencies generally cause the gamma yield to decrease with an increasing Z2, in contrast with the SE yield delta under electron impacts. Most of the SEs are produced in the surface layer of about 5lambda in depth (lambda: the mean free path of SEs), as they are independent of the incident probe. Under 30 keV Ga ion impacts, the spatial spread of SE information is roughly as small as 10 nm, decreasing with an increasing Z2. Under 10 keV electron impacts, the SEI excited by the primary electrons has a small spatial spread of about 5lambda, but the SEII excited by the backscattered electrons has a large one of several 10 to several 100 nanometers, decreasing with an increasing Z2. The main cause of a small spread of SE information at ion impact is the short ranges of the projectile ions returning to the surface to escape as backscattered ions, the recoiled target atoms, and the target electrons in collision cascade. The 30 keV Ga-SIM imaging is better than the 10 keV SEM imaging in spatial resolution for the structure/material measurements. Here, zero-size probes are assumed.  相似文献   

2.
Raynald Gauvin 《Scanning》1995,17(6):348-354
A new method to characterize electron scattering in solids is presented. This method is based on the concept of fractal geometry leading to a generalized walk. A criterion is presented to validate the applicability of this method. This method is applied to random walks with variable mean free path to validate it. Finally, this method is applied to the diffusion of incident electrons in solids of gold and carbon to characterize the transition between persistent and random walk processes describing the diffusion of the electrons in these materials.  相似文献   

3.
Zhang P  Wang HY  Li YG  Mao SF  Ding ZJ 《Scanning》2012,34(3):145-150
Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.  相似文献   

4.
Li HM  Ding ZJ 《Scanning》2005,27(5):254-267
A new Monte Carlo technique for the simulation of secondary electron (SE) and backscattered electron (BSE) of scanning electron microscopy (SEM) images for an inhomogeneous specimen with a complex geometric structure has been developed. The simulation is based on structure construction modeling with simple geometric structures, as well as on the ray-tracing technique for correction of electron flight-step-length sampling when an electron trajectory crosses the interface of the inhomogeneous structures. This correction is important for the simulation of nanoscale structures of a size comparable with or even less than the electron scattering mean free paths. The physical model for electron transport in solids combines the use of the Mott cross section for electron elastic scattering and a dielectric function approach for electron inelastic scattering, and the cascade SE production is also included.  相似文献   

5.
Secondary fluorescence induced by photoelectric absorption of x-rays generated by an electron beam can occur when the characteristic x-ray energy of material “A” exceeds the critical excitation energy of material “B.” An expression is developed to calculate secondary fluorescence across a planar boundary from a discrete source placed at any (X, Y, Z) coordinates relative to the boundary. The expression can be incorporated into a Monte Carlo electron trajectory simulation which calculates the discrete distribution of primary x-ray generation.  相似文献   

6.
7.
8.
Common and different aspects of scanning electron microscope (SEM) and scanning ion microscope (SIM) images are discussed from a viewpoint of interaction between ion or electron beams and specimens. The SIM images [mostly using 30 keV Ga focused ion beam (FIB)] are sensitive to the sample surface as well as to low-voltage SEM images. Reasons for the SIM images as follows: (1) no backscattered-electron excitation; (2) low yields of backscattered ions; and (3) short ion ranges of 20–40nm, being of the same order of escape depth of secondary electrons (SE) [=(3–5) times the SE mean free path]. Beam charging, channeling, contamination, and surface sputtering are also commented upon.  相似文献   

9.
Wight SA 《Scanning》2001,23(5):320-327
This work describes the comparison of experimental measurements of electron beam spread in the environmental scanning electron microscope with model predictions. Beam spreading is the result of primary electrons being scattered out of the focused beam by interaction with gas molecules in the low-vacuum specimen chamber. The scattered electrons form a skirt of electrons around the central probe. The intensity of the skirt depends on gas pressure in the chamber, beam-gas path length, beam energy, and gas composition. A model has been independently developed that, under a given set of conditions, predicts the radial intensity distribution of the scattered electrons. Experimental measurements of the intensity of the beam skirt were made under controlled conditions for comparison with model predictions of beam skirting. The model predicts the trends observed in the experimentally determined scattering intensities; however, there does appear to be a systematic deviation from the experimental measurements.  相似文献   

10.
We present a three‐dimensional simulation of scanning electron microscope (SEM) images and surface charging. First, the field above the sample is calculated using Laplace's equation with the proper boundary conditions; then, the simulation algorithm starts following the electron trajectory outside the sample by using electron ray tracing. When the electron collides with the specimen, the algorithm keeps track of the electron inside the sample by simulating the electron scattering history with a Monte Carlo code. During this phase, secondary and backscattered electrons are emitted to form an image and primary electrons are absorbed; therefore, a charge density is formed in the material. This charge density is used to recalculate the field above and inside the sample by solving the Poisson equation with the proper boundary conditions. Field equation, Monte Carlo scattering simulation, and electron ray tracing are therefore integrated in a self‐consistent fashion to form an algorithm capable of simulating charging and imaging of insulating structures. To maintain generality, this algorithm has been implemented in three dimensions. We shall apply the so‐defined simulation to calculate both the global surface voltage and local microfields induced by the scanning beam. Furthermore, we shall show how charging affects resolution and image formation in general and how its characteristics change when imaging parameters are changed. We shall address magnification, scanning strategy, and applied field. The results, compared with experiments, clearly indicate that charging and the proper boundary conditions must be included in order to simulate images of insulating features. Furthermore, we shall show that a three‐dimensional implementation is mandatory for understanding local field formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号