首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to investigate the flow characteristics in the riser pipe and the suction pipe of airlift pump at a series of air flow rates and submergence ratios by using a high speed camcorder and a Laser Doppler Velocimetry system(LDV). A modified model was developed to predict the performance of airlift pump operating in gas-liquid two-phase flow. The results show that an unstable flow structure composed by a water falling film,a bubbly mixture, a water ascending film appearing alternately in riser pipe dominates the performance of airlift pump at large air flow rates. The bubbly mixture with a strongest capacity for pumping water first increases to its maximum and then slightly decreases. In suction pipe, the average velocity shows a flat profile and increases with increasing submergence ratio. Moreover, the predicted results of modified model are in good agreement with the experimental data in a margin of ± 12%.  相似文献   

2.
在对气升式内环流生物反应器内部流动分析基础上,全面考虑反应器下降管中气泡的并聚破碎、气液两相间相互作用和滑移等, 建立了能描述反应器下降管中复杂流动的CFD数学模型. 运用CFX-4.4对模型方程进行求解, 通过求解得到了包括气液两相速度场、局部气含率分布等详尽信息,并就液相流动速度与相应条件下的PIV测试结果进行了比较,主体流动速度的偏差在20%以下,且两者总的变化趋势一致.该模型能较好地预测反应器下降管内的复杂流场.  相似文献   

3.
大颗粒三相环隙气升式环流反应器流体力学行为   总被引:1,自引:3,他引:1       下载免费PDF全文
张念  王铁峰  于伟  王金福 《化工学报》2009,60(10):2446-2452
研究了大颗粒体系气升式环流反应器的流体力学行为,考察了表观气速和颗粒质量分数对床层膨胀高度、循环液速和固含率分布的影响。实验结果表明,按颗粒的运动状态不同可以将反应器内的流动分为3个区域,即固定床区域、膨胀床区域和循环床区域,各流动区域内的流动行为存在显著差异。随着颗粒质量浓度的增大,起始流化气速和最小循环气速均显著增大。基于三相流化床的流化模型和环流反应器的特点建立了相应的数学模型,对大颗粒三相气升式环流反应器的起始流化气速和最小循环气速进行了预测,模型预测值与实验测量值吻合良好。  相似文献   

4.
王娟  毛羽  刘艳升  曹睿 《化学工程》2006,34(4):28-31
采用k-ε二方程模型和欧拉多相流模型,对一种气升式环流反应器内的湍流气液二相流进行了全尺寸的数值模拟研究,考察了采用具有不同大小分布孔气体分布器时反应器内气含率和流速分布的细节。模拟结果表明采用小分布孔的反应器内的平均气含率较高,气液二相接触效果较好,对于反应过程有利。计算所得的整体气含率与实测的整体气含率进行了对比,吻合较好。  相似文献   

5.
The operation of an airlift pump, working under low submergence ratios (between 0.17 and 0.31), has been visually studied. The two-phase flow structures occurring in the riser channel and around the injector section were recorded by a high speed video system. A quasi-periodic burst-like behaviour characterised the flow pattern in the riser tube, which appeared to dominate the operation of the airlift pump under the conditions of low submergence ratios. An interesting aspect of the airlift pump operation, under these conditions, is that the two phases show a large interface area; this is due to the high dispersion degree of the two-phase mixture in the riser duct. Data and pictures from video recordings regarding the sequence, time and length scales of the occurring flow patterns are reported.  相似文献   

6.
The flow regime transitions of the riser and downcomer in an internal‐loop airlift reactor are investigated. Analysis of the effects of mean value, standard deviation and chaotic time series on pressure fluctuation signals is recorded to determine the transition of the hydrodynamics in the riser and downcomer of the internal‐loop airlift reactor. Two major chaotic invariants, the correlation dimension and the largest Lyapunov exponent, are employed to indicate the regime transitions. The regime transitions are determined by the sudden increase and decrease of the chaotic invariants, which are computed by the pressure fluctuation signals obtained by varying the gas flow velocity. The determination of chaotic invariants predicts that there is no heterogeneous phase existing in the downcomer of the internal‐loop airlift reactor. The experimental observations agree well with the predicted results.  相似文献   

7.
Recirculation and flow structures of gas in the downcomer section of a concentric cylindrical airlift reactor for air-water systems were studied, using an optical probe and the cross-covariance technique. A semiempirical model for predicting the gas recirculation rates in airlift reactors was developed based on the concept of ideal bubble flow. The entrained gas rate and the gas recirculation rate increased as the superficial gas velocity increased. There were nonuniform radial distributions of local gas holdup and air flow rates in the downcomer. Air flow rates in the downcomer depended on the superficial gas velocity and the distance from the top of the draft tube, but not on the superficial liquid velocity for this experimental range.  相似文献   

8.
A low‐cost and simple magnetic particle tracer method was adapted to characterize the hydrodynamic behavior of an internal‐ and an external‐loop airlift reactor (ALR). The residence time distribution of three magnetic particles differing in diameter (5.5, 11.0 and 21.2 mm) and with a density very close to that of water was measured in individual reactor sections. The measured data were analyzed and used to determine the velocity of the liquid phase. Validation of the experimental results for liquid velocity was done by means of the data obtained by an independent reference method. Furthermore, analysis of the differences found in the settling velocity of the particle in single‐liquid and gas‐liquid phases was carried out, using a simplified 3D momentum transfer model. The model considering particle‐bubble interaction forces resulting from changes in the liquid velocity field due to bubble motion was able to predict satisfactorily the increase in the particle settling velocity in the homogeneous bubbly regime. The effective drag coefficient in two‐phase flow was found to be directly dependent on particle Reynolds number to the power of ? 2 but independent of gas flow‐rate for all particle diameters studied. Based on the experimental and theoretical investigations, the valid exact formulation of the effective buoyancy force necessary for the calculation of the correct particle settling velocity in two‐phase flow was done. In addition, recommendations concerning the use of flow‐following particles in internal‐loop ALRs for liquid velocity measurements are presented. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
实验考察了在气升式内环流光生物反应器中通气量、CO2含量等培养条件对Nannochloropsis sp.生长及EPA合成的影响. 结果表明,在气升式内环流光生物反应器中培养,Nannochloropsis sp.生长速率显著提高. 培养8 d,Nannochloropsis sp.生物量(干重)可达857 mg/L,是摇床培养的2倍. 在一定范围内,Nannochloropsis sp.的生长速率随通气量的增加而增加,在本实验条件下,通气量为500 mL/min时生长最快,而过高的通气量则对Nannochloropsis sp.的生长没有促进作用. 在通气中含1%(j) CO2时,可加快藻细胞的生长,最大生长速率可达不配加CO2时的1.8倍. 通气量和CO2对Nannochloropsis sp.细胞内总脂肪酸及EPA的积累有显著影响. 在通气量为400 mL/min及CO2含量为0.5%时,培养液中EPA产量最高,达到39.0 mg/L.  相似文献   

10.
Global modelling of a gas-liquid-solid airlift reactor   总被引:1,自引:0,他引:1  
This paper presents a global model of three phase flow (gas-liquid-solid) in an internal airlift reactor. The airlift is composed of four zones: a riser (on the aerated side on the internal wall), a downcomer (on the opposite side) and two turning zones above and below the internal wall. Tap water is the liquid continuous phase and the dispersed phases are air bubbles and polyethylene particles. The global modelling of the airlift involves mass and momentum equations for the three phases. The model enables phase velocities and phase volume fractions to be estimated, which can be compared to experimental data. Closure relations for the gas and solid drift velocities are based on the model proposed by Zuber and Findlay. The drift flux coefficients are derived from CFD numerical simulations of the airlift. Gas bubble and solid particle averaged slip velocities are deduced from momentum balances, including drag coefficient correlations. The link between Zuber and Findlay model and the two-fluid model is established. In the experiment as well as in the model, the gas flow rate is fixed. However, the liquid and solid flow rates are unknown. Two closure relations are needed to predict these flow rates: the first closure relation expresses that the volume of solid injected into the airlift remains constant; the second closure relation expresses a global balance between the difference of column height in the riser and the downcomer and the total pressure drop in the airlift. The main parameters of a three phase airlift reactor, like gas and solid volume fractions, are well predicted by the global model. With increasing solid filling rate (40%), the model starts to depart from the experimental values as soon as coalescence of bubbles appears.  相似文献   

11.
This paper documents experiments and CFD simulations of the hydrodynamics of our two-phase (water, air) laboratory internal loop airlift reactor (40 l). The experiments and simulations were aimed at obtaining global flow characteristics (gas holdup and liquid interstitial velocity in the riser and in the downcomer) in our particular airlift configurations. The experiments and simulations were done for three different riser tubes with variable length and diameter. Gas (air) superficial velocities in riser were in range from 1 to 7.5 cm/s. Up to three circulation regimes were experimentally observed (no bubbles in downcomer, bubbles in downcomer but not circulating, and finally the circulating regime). The primary goal was to test our CFD simulation setup using only standard closures for interphase forces and turbulence, and assuming constant bubble size is able to capture global characteristics of the flow for our experimental airlift configurations for the three circulation regimes, and if the simulation setup could be later used for obtaining the global characteristic for modified geometries of our original airlift design or for different fluids. The CFD simulations were done in commercial code Fluent 6.3 using algebraic slip mixture multiphase model. The secondary goal was to test the sensitivity of the simulation results to different closures for the drag coefficient and the resulting bubble slip velocity and also for the turbulence. In addition to the simulations done in Fluent, simulation results using different code (CFX 12.1) and different model (full Euler–Euler) are also presented in this paper. The experimental measurements of liquid interstitial velocity in the riser and in the downcomer were done by evaluating the response to the injection of a sulphuric acid solution measured with pH probes. The gas holdup in the riser and downcomer was measured with the U-tube manometer. The results showed that the simulation setup works quite well when there are no bubbles present in the downcomer, and that the sensitivity to the drag closure is rather low in this case. The agreement was getting worse with the increase of gas holdup in the downcomer. The use of different multiphase model in the different code (CFX) gave almost the same results as the Fluent simulations.  相似文献   

12.
分布器结构对环流反应器气含率分布的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
采用κ-ε二方程模型和欧拉多相流模型,对一种单筒单级气升式气液环流反应器内的湍流气液两相流进行了全尺寸的数值模拟研究,考察了采用3种不同气体分布器时反应器内气含率和流速分布的细节.模拟结果表明不同结构的分布器对总体气含率和内筒中的两相速度分布有很大影响,因而对气含率分布和气液两相接触效果有较大影响,从而对反应过程产生影响.单环分布器产生的气液两相接触效果较差,对于反应过程很不利.对于大直径的环流反应器推荐使用多环分布器.计算所得的整体气含率与实测的整体气含率进行了对比,吻合较好.  相似文献   

13.
低高径比气升式环流反应器数值模拟分析   总被引:1,自引:0,他引:1  
利用商用计算流体力学软件Fluent,利用Euler-Euler双流体模型,重点针对好氧反应的特点,对一种具有低高径比(H/D=1.67)的环流气升式反应器内的气液两相流动及混合性能进行研究,描述出反应器内气含率和环流液速等参数的详细分布,分析模拟结果,气液速度分布和气含率分布等与实际情况基本吻合,从而证实了计算结果的有效性,为工业实际应用提供一定参考。  相似文献   

14.
A new model for the liquid circulation rates in airlift reactor (ALR) is presented. The model is based on the energy balance for the flow loop (riser, turn riser‐downcomer, downcomer, and turn downcomer‐riser) coupled with a drift flux theory of two‐phase flow gas‐liquid system, considering a bubbly flow regime. The predicted values of the liquid circulation rates by the developed model are compared with experimental results performed in a 22 dm3 internal loop airlift reactor and with the results obtained in the literatures. The proposed model predicted the experimental results very well. Slip velocity relationship based on the drift flux model was proposed; including the gas holdup, bubble size and the liquid physical properties. The predicted slip velocity was similar to that obtained from the literature. The study revealed that appropriate arrangements of internal bioreactor parts can positively influence the liquid circulation velocity at the same energy consumption. The proposed models are useful in the design; scale up and characterization of the internal loop airlift reactors, and provides a direct method of predicting hydrodynamic behaviour in gas‐liquid airlift reactors.  相似文献   

15.
A method is developed and demonstrated for the prediction of liquid circulation velocity in airlift bioreactors operating with pseudoplastic fluids, including mould suspensions. The method is based on a combination of a recently developed energy balance over airlift loops with analytical expressions for shear stress in turbulent or laminar flow of non-Newtonian fluids. The procedure enables, an a priori calculation of pseudoplastic fluid circulation in airlift devices for design purposes.  相似文献   

16.
气升式环流反应器的理论研究进展   总被引:6,自引:0,他引:6  
概述了气升式环流反应器的流体力学模型,对工程实用性较强的气液两流体模型和气泡导致的湍动模型进行了分类,并对常见相间作用力模型和多相流求解技术进行了总结和评价. 指出将Favre平均的两流体模型和采用Sato模型考虑气泡导致湍动的k-e模型相结合是现阶段气升式环流反应器设计和放大的有力工具. 在分析了气液两相流理论现状的基础上,指出了其存在的问题和进一步的研究方向.  相似文献   

17.
The sensitivity study of bubbly flow in an internal airlift loop reactor is presented using a steady Reynolds averaging two‐fluid model. Comparative evaluation of different drag formulations, drag coefficient correlations, turbulence effect on the drag coefficient, outlet slip velocity, and bubble size is performed and the respective influence to the simulation results is highlighted. It is found that a complicated drag formulation may not result in reliable predictions. All the drag coefficient correlations underpredict the gas holdup if the influence of turbulence on the drag coefficient is not well incorporated. Fortunately, the global hydrodynamics is not sensitive to the outflow slip velocity for a wide range, so a steady two‐fluid model can be used to simulate the bubbly flow when the flow field is fully developed. The correct estimation of bubble size with properly selected correlations play an important role in successful simulation of gas‐liquid bubbly flow in airlift loop reactors.  相似文献   

18.
Photosynthetic microorganisms could serve as valuable compounds, but also for environmental applications. Their production under controlled conditions implies to design specific reactors, named photobioreactors, in which light supply is the main constraint. This paper was devoted to an original external-loop airlift photobioreactor (PBR) with annular light chambers in which a swirling motion was induced. The aim was to characterize this novel geometrical configuration in terms of gas-liquid hydrodynamics, and to test its potentiality for algal cultures. This PBR consisted of two identical columns connected by flanges defining tangential inlets, each column being made of two transparent concentric tubes (6 L in liquid volume, 50 m−1 in specific illuminated area). Firstly, the global flow characteristics (circulation and mixing times) were determined by a tracer method and modelled by an axial dispersed plug flow with complete recirculation (Péclet number). By means of a double optical probe, both local and global time-averaged parameters of the gas phase were measured, namely void fraction, bubble velocity, frequency and size. The gas-liquid mass transfer were also characterized, in tap water and in culture medium, by measuring overall volumetric mass transfer coefficients. In a second time, cultures of the microalga Chlamydomonas reinhardtii were run in batch mode. The variations of biomass concentration and pigment content with time from inoculation were successfully obtained. All these findings highlighted: (i) some significant differences in terms of gas-liquid hydrodynamics between the present PBR and the usual airlift systems, (ii) the interest of this configuration for algal cultures, even if complementary studies and technological improvements are still required for definitively validating its scale-up.  相似文献   

19.
Circulating flows are found in a variety of mixing equipment such as stirred tanks and airlift loop vessels. This paper presents a different route towards modeling the mixing in circulating flows. This route is based on an innovative use of Poincaré maps and suspended flows, concepts which are found in dynamical systems theory. The mixing model is developed for an arbitrary recirculating flow and uses a circulation time distribution function that is incorporated into the transport equations for an inert tracer injected into the flow system. Two cases are used to study the application of the mixing model in this work. The first case addresses the question of whether the mixing model can be used to study airlift vessels differing in scale and the second case highlights the application of the model to a standard stirred tank. In the first case, model predictions have been compared with experimental data obtained from two geometrically similar airlift systems of different volumes and good agreement is observed. A single parameter correlation for the mixing time is also proposed. In the second case, computational fluid dynamics was used to obtain the flow field of a standard stirred tank fitted with a six bladed Rushton turbine. From the flow field, the distribution of the circulation times is extracted and used to determine the tracer concentration profile in the stirred tank. Good agreement between the model predictions and published experimental data is observed thus indicating that the mixing model shows promise as a technique for studying the mixing in stirred tanks.  相似文献   

20.
研究了78.5L气升式环流反应器内部结构对流动性能的影响规律, 并给出最佳区间来为工业装置提供理论指导。利用Fluent软件建立数学模型与实验装置作对比, 模拟了不同气液分离区高度与外筒高度比、导流筒长度与外筒长度比和筒内外直径比对流动行为的影响规律。结果表明:数学模型和实验结果误差较小, 可以用来预测气升式环流反应器流动行为。气液分离区高度与外筒高度比值过大会导致环流阻力增大, 从而不利于流动, 比值为0.34~0.36时流动性能最佳;导流筒长度与外筒长度的比值增大可增加气含率和环流液速, 但是比值过大会引起气泡的聚合, 从而影响流动性能, 当比值为0.60~0.62时流动性能最佳;在一定范围内增加内外筒直径比会改善流动效果, 但环隙面积过小会增加环形阻力, 内外筒直径比为0.73~0.77时流动效果比较理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号