首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial area per unit volume is one of the key parameters in bubbly flow. Momentum, mass and energy transfer occur through the interface between the phases. The functionality of two phase reactors with bubbly flow depends mainly on these three transfer processes. Thus, the design process of a reactor requires the prediction of interfacial area density. In the present work a simple equation for the interfacial area density is derived from the population balance, taking into account the events of coalescence and bubble break-up for each bubble fraction. The system of partial integro-differential equations is simplified. Since the integrals in these equations complicate a numerical treatment. This reduces the balance to one single partial differential equation. An approximate analytical solution is given. If the resulting equation is applied to large gas fluxes, the instability of the coalescence process causes large bubbles and gas plugs to develop. From the instability the volume fraction of the large bubbles and gas plugs may be predicted. Additives may hinder the coalescence process. Experiments show that coalescence hindrance changes the coalescence kernel only by a factor. Calculations are done for bubble columns and vertical pipe flow.  相似文献   

2.
The first part of this contribution [1] presents the population balances, i.e., balance equations for the numerical density of the bubbles in the individual bubble fractions. They are solved approximately by an analytical approach. There results a straightforward balance equation for the average bubble volume. This equation can be solved analytically for simple fields of flow. For complex fields of flow it has to be solved by a numerical approach. The result obtained is the bubble volume at any time and place averaged from the size distribution of the bubbles. This permits calculation of the local size distribution of the bubbles with the aid of the approximate analytical solution. In the second part of this contribution [2], this balance equation is extended to cover large gas volumes. Large bubbles and gas plugs then occur. These possess a very small interfacial area relative to their volume. They have high rise velocities and thus short residence times in the flow. They therefore participate to only a slight extent in mass and energy transfer and have to be considered, for example, in calculation of the conversion on a chemical reaction or the mode of action of an evaporator. The calculations are performed for pure liquids and compared with the authors' own and other experimental results. The liquids used industrially are generally mixtures of substances. In such liquids the coalescence behavior deviates significantly from that in pure liquids. The influence on coalescence and thus on the interfacial area is examined in the present paper.  相似文献   

3.
Coupled Calculation of Bubble Size Distribution and Flow Fields in Bubble Columns In this paper the use of computational fluid dynamics (CFD) for the calculation of flow fields in bubble columns is explained. The local bubble size distribution is considered with the aid of a simplified balance equation for the average bubble volume in bubbly flow. Models are developed for the rate of bubble break‐up and coalescence based on physical principals. The flow fields in cylindrical bubble columns without internals are calculated using the Euler‐Euler method. The small and large bubble fraction are considered as pseudo‐continuous phases in addition to the liquid phase. The calculated flow fields are characterised by several large scale vortices. The local volume fractions of gas and liquid are very inhomogeneous and highly time dependent. The calculated volume fractions, velocities and bubble size distributions agree well with experimental results for bubble columns up to 0.3 m in diameter.  相似文献   

4.
This article presents a computational study of the co‐current downward Taylor flow of gas bubbles in a viscous liquid within a square channel of 1 mm hydraulic diameter. The three‐dimensional numerical simulations are performed with an in‐house computer code, which is based on the volume‐of‐fluid method with interface reconstruction. The computed (always axi‐symmetric) bubble shapes are validated by experimental flow visualizations for varying capillary number. The evaluation of the numerical results for a series of simulations reveals the dependence of the bubble diameter and the interfacial area per unit volume on the capillary number. Correlations between bubble velocity and total superficial velocity are also provided. The present results are useful to estimate the values of the bubble diameter, the liquid film thickness and the interfacial area per unit volume from given values of the gas and liquid superficial velocities. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
Theoretical prediction of flow regime transition in bubble columns was studied based on the bubble size distribution by the population balance model (PBM). Models for bubble coalescence and breakup due to different mechanisms, including coalescence due to turbulent eddies, coalescence due to different bubble rise velocities, coalescence due to bubble wake entrainment, breakup due to eddy collision and breakup due to large bubble instability, were proposed. Simulation results showed that at relatively low superficial gas velocities, bubble coalescence and breakup were relatively weak and the bubble size was small and had a narrow distribution; with an increase in the superficial gas velocity, large bubbles began to form due to bubble coalescence, resulting in a much wider bubble size distribution. The regime transition was predicted to occur when the volume fraction of small bubbles sharply decreased. The predicted transition superficial gas velocity was about 4 cm/s for the air-water system, in accordance with the values obtained from experimental approaches.  相似文献   

6.
Counter current bubble columns have the feature that specific gas-liquid interfacial area and gas holdup are larger than those for standard and cocurrent bubble columns. In this study, three different flow regimes, churn-turbulent flow, bubble flow and bubble down-flow, have been observed in a counter-current bubble column and correlations of gas holdup and volumetric liquid-phase mass transfer coefficient have been proposed as functions of operating variables such as the superficial velocities of gas and liquid, the gas-liquid slip velocity and the liquid properties.  相似文献   

7.
就痕量精馏中塔板传质效率低、需强化气液传质的问题,研究者提出了新型鼓泡破泡一体化高效精馏塔盘,通过在筛板上泡沫层高度范围内设置一层破泡装置,打破大气泡,减小气泡体积,强制界面进行更新,从而提高传质效率。采用双欧拉模型分别对鼓泡破泡一体化塔盘和筛板进行了气液流场的数值模拟,并对模型进行了验证。对比两种塔板的计算结果可以看出:在相同操作条件下,破泡装置将大气泡破裂成无数小气泡,使高气含率区域面积较普通筛板进一步增大,且气含率梯度变化更均匀;增加破泡装置后,在相同气速条件下气泡上升速度下降,气体在液层中的滞留时间延长,使鼓泡层高度增加,可显著提高传质效率,且降低了气体雾沫夹带量;破泡装置还明显改善了气相的纵向分布,气含率由塔板底部向上逐渐增大且存在明显分界;破泡装置附近湍动较剧烈,气泡破碎喷出的气体会进一步撕裂液膜,气体破碎作用会抑制气泡聚并,促进界面的快速更新更有利于传质过程的进行。研究结果可对工业塔板设计和优化提供指导。  相似文献   

8.
An experimental study of three‐phase dispersed flow in a horizontal pipe has been carried out. The pressure drop over the pipe strongly increases with increasing bubble and drop volume fraction. Because of the presence of drops the transition from dispersed bubble flow to elongated bubble flow occurs at a lower gas volume fraction. The gas bubbles have no significant influence on the phase inversion process. However, phase inversion has a strong effect on the gas bubbles. Just before inversion large bubbles are present and the flow pattern is elongated bubble flow. During the inversion process the bubbles break‐up quickly and as the dispersed drop volume fraction after inversion is much lower than before inversion, a dispersed bubble flow is present after inversion. (When inversion is postponed to high dispersed phase fractions, the volume fraction of the dispersed phase can be as high as 0.9 before inversion and as low as 0.1 after inversion.) © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

9.
Many of the existing methods, for the determination of the specific interfacial area in bubble columns, consider the column in a dynamic equilibrium between bubble coalescence and breaking-up. The aim of this work is to study if this consideration can be considered true for low superficial gas velocities. Two existing models have been chosen from literature in order to predict the break-up [Wang, T., Wang, J., Jin, Y., 2003. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chemical Engineering Science 58, 4629-4637] and the coalescence [Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426] rates. In order to confirm the validity of the models, predictions were compared with experimental results obtained by image analysis. Several simulations were performed for different superficial gas velocities and initial bubble size distributions. The column length needed to reach dynamic equilibrium was calculated for each simulation. The results show that the necessary length to reach the dynamic equilibrium does not depend on the shape of the initial distribution, but essentially on its Sauter mean diameter. The necessary length to reach the dynamic equilibrium is very important for low superficial gas velocities. The assumption that the entire column is in dynamic equilibrium is in general not valid. Therefore, the initial Sauter mean diameter and the total column length are important parameters for the determination of the specific interfacial area.  相似文献   

10.
Mean relative gas hold up, slip velocity, bubble size distribution, and volumetric mass transfer coefficient of oxygen were measured in sparged columns of highly viscous non-Newtonian fluids (CMC solutions) as a function of the gas flow rate, and CMC concentration (fluid consistency index k, and flow behaviour index n).By comparison of the measured bubble swarm velocities with those calculated by relations for single bubbles the bubble swarm behaviour was investigated. It could be shown that small bubbles in swarm have higher rising velocities than single bubbles, expecially in highly viscous media. Large single bubbles rise with high velocity due to the change of their shape caused by the swarm of the smaller bubbles. No large bubbles with spherical cap shape could be observed. The volumetric mass transfer coefficient decreases rapidly with increasing CMC-concentration.A comparison of the volumetric mass transfer coefficients with those measured in mechanically agitated vessels indicates, that the performance of sparged columns is comparable with the one of agitated vessels. Because of their lower energy requirement sparged columns are more economical than mechanically agitated vessels. It is possible to improve the performance of sparged columns by the redispersion of large bubbles in a multistage equipment.  相似文献   

11.
Bubble columns are widely used in the chemical and biochemical industries. In these reactors a gaseous phase is dispersed into a continuous liquid phase thus the rising bubble swarm induces a circulating flow field. For the dimension of these reactors the local interfacial area and the residence time of the liquid and the gaseous phase are key parameters. In this paper an Euler‐Euler approach is used to calculate the flow field in bubble columns numerically. Therefore a transport equation for the mean bubble volume based on a population balance equation approach is coupled with the balance equations for mass and momentum. The calculations are performed for three‐dimensional, instationary flow fields in cylindrical bubble columns considering the homogeneous and the heterogeneous flow regime. For the interphase mass transfer the physical absorption of the gaseous phase into the liquid is assumed. The back mixing in the gaseous and liquid phase is calculated from the local and time dependent concentration of a tracer.  相似文献   

12.
BACKGROUND: The bubble size distribution in gas‐liquid reactors influences gas holdup, residence time distribution, and gas‐liquid interfacial area for mass transfer. This work reports on the effects of independently varied gas and liquid flow rates on steady‐state bubble size distributions in a new design of forced circulation loop reactor operated with an air–water system. The reactor consisted of a cylindrical vessel (~26 L nominal volume, gas‐free aspect ratio ≈ 6, downcomer‐to‐riser cross‐sectional area ratio of 0.493) with a concentric draft tube and an annular riser zone. Both gas and liquid were in forced flow through a sparger that had been designed for minimizing the bubble size. RESULTS: Photographically measured bubble size distributions in the riser zone could be approximated as normal distributions for the combinations of gas and liquid flow rates used. This contrasted with other kinds of size distributions (e.g. bimodal, Gaussian) that have been reported for other types of gas‐liquid reactors. Most of the bubbles were in the 3 to 5 mm diameter range. At any fixed low value of aeration rate (≤1.8 × 10?4 m3s?1), increase in the liquid flow rate caused earlier detachment of bubbles from the sparger holes to reduce the Sauter mean bubble size in the riser region. CONCLUSION: Unlike in conventional bubble columns where bimodal and Gaussian bubble size distributions have been reported, a normal bubble size distribution is attained in forced circulation loop reactors with an air–water system over the entire range of operation. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
针对SBS加氢反应器开发与设计,以SEBS-1650己烷溶液为液相,采用差压法和床层塌落法研究了气液鼓泡塔中高黏度溶液的流体力学行为,考察了黏度对低表面张力溶液的气含率、大小气泡气含率、大小气泡上升速度和比表面积等因素的影响。结果表明,随黏度增加,大气泡增多,气含率明显降低,塔内流型处于湍流区;由床层塌落曲线确定鼓泡塔内存在三种类型的气泡:大气泡、小气泡及细小气泡,随黏度增加,小气泡与细小气泡逐渐减少;黏度对大小气泡的上升速度略有影响,比表面积随黏度增加而明显降低。根据实验结果给出了大小气泡气含率与平均气含率的计算公式。  相似文献   

14.
Bubble columns are operated either in the homogeneous or heterogeneous flow regime. In the homogeneous flow regime, the bubbles are nearly uniform in size and shape. In the heterogeneous flow regime, a distribution of bubble sizes exists. In this paper, a CFD model is developed to describe the hydrodynamics of bubble columns operating in either of the two flow regimes. The heterogeneous flow regime is assumed to consist of two bubble classes: “small” and “large” bubbles. For the air‐water system, appropriate drag relations are suggested for these two bubble classes. Interactions between both bubble populations and the liquid are taken into account in terms of momentum exchange, or drag‐, coefficients, which differ for the “small” and “large” bubbles. Direct interactions between the large and small bubble phases are ignored. The turbulence in the liquid phase is described using the k‐ϵ model. For a 0.1 m diameter column operating with the air‐water system, CFD simulations have been carried out for superficial gas velocities, U, in the range 0.006–0.08 m/s, spanning both regimes. These simulations reveal some of the characteristic features of homogeneous and heterogeneous flow regimes, and of regime transition.  相似文献   

15.
考察了气-液鼓泡塔中气泡流和液流的运动规律,提出了将分散的气泡流连续介质化的假设和基于容积通量的流体力学表达方式,建立了气含率分布与液体内循环流动结构的连续介质流模型,较好地揭示了液体循环流动规律. 模型计算与实验结果吻合.  相似文献   

16.
Packed upflow bubble columns . Packed upflow bubble columns are used in the chemical industry, in biotechnology, and in waste-water purification. They are usually operated in the co-current mode and have various advantages, but also disadvantages, compared with empty bubble columns. This survey reports the current state-of-the-art in fluid dynamics (flow states, pressure drop, holdup and dispersion, bubble size and bubble rise velocity, interfacial area), mass and heat transfer (mass transfer coefficients at the gas/liquid and liquid/solids interface, heat transfer coefficients for fluid/solids and fluid/wall interfaces, effective thermal conductivity of the bulk solids through which flow occurs), flow models (continuum models, stage models, zone models), and other aspects of this type of multiphase reactor; gaps in our knowledge are also indicated.  相似文献   

17.
The paper deals with hydrodynamics in bubble columns. The objective of the paper is to study stability and mixing in a bubble column. The modeling of parameters such as stationary drag and added mass is addressed. In addition, the effect of bubble deformation in terms of eccentricity is highlighted. In a previous paper, the transition between homogeneous and heterogeneous regimes in bubble column without liquid flow has been shown to be driven by the deformation of the bubbles associated to drag and added mass. In the present paper, this work is generalized to bubble column with liquid flow and to the transition from bubble flow to slug flow in a vertical pipe. Numerical simulations of gas-liquid reactors are presented. The numerical simulations are validated in the case of gas plume after the Becker et al. data (Becker, S., Sokolichin, A., & Eigenberg, G. (1994) Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chemical Engineering Science, 49 (24B), 5747-5762. The numerical simulations are finally applied to a bubble column. The simulations of residence time distribution coupled to transient hydrodynamics are shown to be very sensitive to the modeling of interfacial transfer of momentum from the bubbles to the liquid in terms of drag and added mass, including the effect of bubble deformation.  相似文献   

18.
The presence of an inert immiscible organic phase in gas—liquid dispersions in stirred vessels influences the interfacial area in a more complex fashion than hitherto reported. As the organic phase fraction is increased, the interfacial area expressed on the basis of a unit volume of dispersion or aqueous phase, first increases, passes through a maximum and then decreases. This trend is observed irrespective of whether the area is determined by chemical means or by physical method.It is found that for low values of inert phase fraction, the average bubble size decreases whereas the gas holdup increases, resulting in increased interfacial area. The lower average bubble size is found to be due to partial prevention of coalescence as the bubbles size generated in the impeller region actually increases with the organic phase fraction. The actual values of interfacial areas depend on the nature of the organic phase.It is also found that the organic phase provides a parallel path for mass transfer to occur, when the solubility of gas in it is high.  相似文献   

19.
The overall gas hold up, EG, and bubble size distribution were separated into the particular gas hold up, EGK, and Sauter diameter. dSG. due to “small bubbles” as well as EGG and dSG, due to “intermediate to large bubbles.” Bubbles are defined to be “small” if they remain in the bubbling layer 15 seconds after the gas flow is turned off. The bubbles which leave the layer during this time are considered to be “intermediate to large bubbles.” The time dependences of EG EGK and EGG, as well as of bubble size distribution after initiating the aeration of the liquid, is investigated. The steady state EG, EGK and EGG, Sauter diameter and specific geometrical surface area of “small” and “intermediate to large” bubbles as well as of the entire bubble population were determined in bubble columns employing 50, 70, 90 and 95% glycerol solutions and perforated plates with different hole diameters (dH = 0.5. 1.0 and 3.0 mm) respectively. In highly viscous media the “small” and “very large” bubble fractions are high. A comparison of the specific geometrical bubble surface areas with the corresponding volumetric mass transfer coefficients, kLa's, measured earlier indicate that the “small” bubbles do not contribute to kLa. The influence of the “small” bubbles on the fluiddynamics of the two phase system is discussed.  相似文献   

20.
Bubble coalescence reduces specific area and weakens the work performance of bubble column. The bubble coalescence near gas sparger which is caused mainly by bubble growing is different from the ones occurring in major liquid. Bubble coalescence efficiency near gas sparger is influenced by many factors including sparger configuration, gas flow rate, bubble deformation, solution composition, etc. This work has conducted a set of visual experiments to study the coalescence characteristics near multi-orifice plate. The experiment parameters cover a wide range of conditions including large scope of gas flow rate,different kinds of solution and orifice configurations. The experimental results suggest that coalescence time is applicable to reflect the influence of the pitch of orifices and gas flow rate on bubble coalescence efficiency. As the number of orifices increases, bubble coalescence efficiency is reduced by the disturbance from the bubbles at adjacent orifices. A hindering coefficient is used to consider the hindering effect of additives on bubble coalescence efficiency. Finally a new calculation expression is established to predict bubble coalescence efficiency near multi-orifice plate whose fundamental form is based on the logistic curve of binary response. The calculated values that refer to this calculation expression are well consistent with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号