共查询到17条相似文献,搜索用时 78 毫秒
1.
首先将聚类集成问题归结为直观的最佳子空间的求解问题;随后根据线性代数理论将该问题描述为带约束条件的优化问题,通过放松离散约束条件进一步约简为矩阵低秩近似问题;最后通过求解超图的加权邻接矩阵的奇异值分解问题获得最佳子空间的一组标准正交基.据此,设计了一个基于矩阵低秩近似的算法,该算法根据每个对象在低维空间下的坐标使用K均值算法进行聚类,从而得到最终的结果.在多组基准数据集上的实验结果表明:较之于传统的聚类集成算法,本文的算法获得了更好的聚类结果,且效率较高. 相似文献
2.
该文提出一种改进的带虚拟领导的Flocking模型,并基于此模型开发了一种数据聚类算法。在此算法中,数据集中的数据点被考虑为可以在空间中移动的Agent,并且根据改进的模型,生成有权无向图。然后从数据集中选定一组虚拟领导,每个数据点与其中个虚拟领导建立连接。所有与这个数据点有连接的邻居,都通过一个势函数产生场,对这个数据点进行作用,此数据点将沿着所有场矢量叠加的方向移动一段距离。算法中,虚拟领导的加入有效减少了数据点,特别是邻居较少的数据点向某个中心收敛的时间。在所有数据点不断受到作用而移动的过程中,同类的数据点就会逐渐地聚集到一起,而不同类的数据点则相互远离,最后自动形成聚类。此算法的实验结果表明,数据点能合理有效地被聚类,并且算法具有较快的收敛速度,同时,与其他算法对比也验证了此算法的有效性。 相似文献
3.
4.
唐世翔 《信息技术与信息化》2021,(3):106-107
监督学习面临样本需求过多以及所有样本都需要进行标注的问题,所以实验采用无监督学习的方法.其中生成对抗网络GAN在许多无监督学习的应用表现出良好的效果,不仅可以对轮胎类别进行判定也可以进行初步轮胎样本空间分布分析.改进后网络的样本聚类准确率提高了6%-7%,且网络生成的轮胎样本图片噪声较少,纹路和钢丝都清晰可见. 相似文献
5.
针对基于监督学习的入侵检测算法所面临的标记数据问题,本文提出了一种基于主动学习的半监督聚类入侵检测算法,利用少量的标记数据,生成用于初始化算法的种子聚类,然后辅助聚类过程,并根据网络数据的特点,将主动学习策略应用于半监督聚类过程中,检测已知和未知攻击。 相似文献
6.
针对近邻传播(AP)聚类算法的计算复杂度和准确性,该文提出一种分层组合的半监督近邻传播聚类算法(SAP-SC)。算法引入分层聚类的思想,将一次AP聚类过程等分成若干层聚类,使得处理过程简单、易于实现;每层只关注聚类困难的数据点,并通过构造成对点约束和使用子簇标签映射进行半监督学习;基于组合提升的方法将各层聚类结果加权叠加,从而提升了算法的准确性能。理论分析和实验结果表明:算法在聚类准确性和计算复杂度方面有了较大改进。 相似文献
7.
提出了一种改进的蚁群聚类分析算法,通过改进LF算法中群体相似度函数,加入参数的自适应调整策略,利用短期记忆和网格信息素的局部分布控制蚂蚁的随机移动,并结合蚂蚁速度动态变化、半径递增、强制放下等特性。采用测试数据和不同的算法进行了对比实验分析,仿真实验结果表明,该算法显示出了较高的稳定性和准确率。 相似文献
8.
9.
10.
提出一种新的图聚类算法,结合结点的结构及属性特性,使用统一的随机移动距离计算结点间的相似度,在邻接随机移动距离矩阵的基础上进行聚类.实验结果表明,基于属性扩展图的聚类算法在图拓扑结构的基础上,充分考虑了各个结点所拥有的属性特点,得到的聚类结果将更好的切合实际的应用. 相似文献
11.
12.
动态网络社团结构挖掘有助于获取整体网络特性和发展规律。由于动态网络具有多个时刻,传统静态网络社团挖掘算法不仅容易在相邻时刻产生具有较大差异的社团划分结果,而且导致较高时间复杂度。虽然最近受到广泛关注的动态网络增量算法可以一定程度上降低算法时间复杂度,但普遍存在人工设定参数、可扩展性差等局限性。该文提出一种随机游走与增量相关节点相结合的社团挖掘算法(RWIV)进行动态网络社团挖掘。利用动态网络时间局部性即相邻采样时刻网络变化不大的特点,通过对增量相关节点进行随机游走聚类后社团划分,避免了对整个网络中的节点全部重新划分。实验结果和分析表明:RWIV算法可有效解决IC(Incremental algorithm for Community identification)和IDCM(Increment and Density based Community detection Method)判定参数难以选定、累积误差及网络突变等问题,其社团挖掘效率高于现有IC和IDCM算法。 相似文献
13.
针对科技文献类标题短文本关键词提取时,已有自然语言处理算法难以建模文献时间与权威性且短文本词语较少建模往往存在高维稀疏问题,本文提出了一个综合实时性以及权威性的关键词提取算法为研究者进行相关推荐.该方法将文献标题视为超边,将标题中不同词项视为超点来构建超图,并对超图中的超边与超点同时加权,进而设计一种基于加权超图随机游走的关键词提取算法对文献标题的词项进行提取.该模型通过对文献来源,发表年份以及被引次数建模来对超边进行加权,根据节点之间的关联度以及每对节点在特定标题中的共现距离对超点加权.最后,通过超图上的随机游走计算出节点的重要性进而确立可推荐的关键词.实验表明,与三种基准短文本关键词提取算法相比,本文算法在精确率和召回率方面均有所提高. 相似文献
14.
在网络日趋复杂化、巨大化的背景下,仅依靠网络拓扑特征难以提高现有社区发现算法的精确度和性能。该文提出一种优化网络社区发现的边权预处理方法,基于马尔可夫随机游走理论建模社区结构对复杂网络行为的影响,根据多重随机游走对网络连接的遍历情况,重新衡量网络边权。预处理后的边权作为网络拓扑的有效补充信息,能够将网络社区结构去模糊化,从而改善现有算法的社区发现性能。对于一些典型的计算机生成网络和真实网络,经实验验证:该预处理方法能够有效提升现有部分社区发现算法的准确性和效率。 相似文献
15.
16.
17.
针对聚类的入侵检测算法误报率高的问题,提出一种主动学习半监督聚类入侵检测算法.在半监督聚类过程中应用主动学习策略,主动查询网络中未标记数据与标记数据的约束关系,利用少量的标记数据生成正确的样本模型来指导大量的未标记数据聚类,对聚类后仍未能标记的数据采用改进的K-近邻法进一步确定未标记数据的类型,实现对新攻击类型的检测.实验结果表明了算法的可行性及有效性. 相似文献