首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以Wilson热力学模型为基础,通过Aspen Plus化工流程模拟软件对变压精馏分离乙醇-氯仿进行计算模拟分析及优化。结果为:低压塔(0.1 MPa)的塔板数为29,进料塔板位置为第12塔板,该塔的回流比为3;高压塔(1.2 MPa)的塔板数为34,进料塔板位置为第20塔板,该塔的回流比为3.5。此时,产品的质量分数达到了99.6%以上,同时也降低了各设备的热负荷。  相似文献   

2.
利用Aspen Plus软件模拟技术,对甲醇-乙醇-水体系进行萃取精馏模拟计算,并用实验进行验证。考察了三塔萃取精馏过程中的T1塔、B1塔和B2塔的塔板数、溶剂比(质量比)、进料位置以及回流比对分离产物纯度的影响,确定了萃取精馏塔T1的塔板数为25,回流比为0.4,原料进料位置在19块塔板,萃取剂进料位置在第5块塔板,B1塔的塔板数为38,回流比12,进料位置在18块塔板,B2塔的塔板数为20,回流比0.27,进料位置在13块塔板。在此条件下,99.511%的甲醇收率高达99.754%,99.829%的乙醇收率高达99.887%,模拟结果与实验结果数据吻合度较高,说明该萃取精馏过程能将甲醇-乙醇-水体系高效分开,该模型适用于分离甲醇-乙醇-水混合物。  相似文献   

3.
采用萃取精馏的方法分离乙酸乙酯和丁酮共沸物系。选取乙二醇作为萃取剂,利用流程模拟软件Aspen Plus对流程进行模拟,分析不同萃取剂进料量、塔板数、回流比、进料位置等参数对产品质量分数及热负荷的影响。通过模拟发现,当乙二醇进料量为500 kg/h、萃取精馏塔塔板数为30、质量回流比为0. 45、原料进料位置为17块板、萃取剂进料位置为5块板,溶剂回收塔塔板数为10、质量回流比为0. 5、进料位置为第4块板时,可得到质量分数为99. 91%的乙酸乙酯及质量分数为99. 60%的丁酮。通过间歇萃取精馏实验对萃取精馏过程进行验证,发现萃取精馏塔塔顶可得到高达质量分数为98%的乙酸乙酯,证明了模拟结果的可靠性。  相似文献   

4.
利用Aspen Plus模拟软件对某厂电石法生产的氯乙烯精馏过程进行了建模与模拟,进料规模为20 m~3/h。选择NRTL物性方法,对低沸塔和高沸塔进行了模拟,模拟结果如下:低沸塔的塔板数为29块,进料位置第3块,回流比为5,操作压力为0.52~0.53 MPa,高沸塔的塔板数为41块,进料位置12块,回流比为0.6,操作压力0.26~0.28 MPa;利用灵敏度分析工具研究了进料位置、采出率、回流比三个因素对精馏过程的影响,对氯乙烯精馏过程进行了优化,结果表明:对于低沸塔,进料位置为3,塔板数为29,B/F为0.99,回流比为6;对于高沸塔,进料位置为12,塔板数为41,D/F为0.99,回流比为0.2。  相似文献   

5.
利用Aspen Plus软件对含有四氢呋喃、正丁醇、γ-丁内酯和水的工业废液的分离提纯工艺进行了确定和模拟。确定使用1,4-丁二醇作为萃取剂,采用四塔流程分离该工业废液,回收四氢呋喃和正丁醇。四氢呋喃的回收使用萃取精馏,溶剂比为0.9,回流比为5,所需塔板数为28块,废液和萃取剂分别从第16块板和第5块板以泡点进料;正丁醇的回收使用两塔共沸精馏,所需脱水塔塔板数为7块,回收塔塔板数为5块。在此操作参数下,模拟所得四氢呋喃回收率可达99.9%,质量分数为99.99%,正丁醇回收质量分数达到99.99%。通过实验结果与模拟结果的比较,验证了本工艺的可行性和模拟结果的可靠性。  相似文献   

6.
采用Aspen Plus软件及NRTL模型对乙酸乙酯-甲醇物系进行了完全热集成变压精馏模拟操作。以乙酸乙酯和甲醇的质量分数为约束函数,以塔釜的热负荷为目标,对两塔的理论板数、进料位置以及回流比进行了优化。基于完全热集成工艺的优化结果为高压T1塔理论板数16块,原料进料位置为第8块板,循环物料进料位置第4块板,回流比为4;常压T2塔理论板数28块,进料位置为第11块板,回流比为5.7。T1高压塔塔底得到的乙酸乙酯和T2常压塔塔底甲醇质量分数都能达到99.5%的分离要求,与传统的变压精馏相比完全热集成变压精馏能耗降低49%。通过实验室的间歇变压精馏小试实验验证,可以分离得到高纯度的乙酸乙酯和甲醇,对实际工艺操作和设备改造有一定的指导意义。  相似文献   

7.
基于甲醇-苯二元共沸体系的压力敏感性,利用Aspen Plus软件对变压精馏(PSD)分离甲醇-苯工艺进行模拟与优化。采用序贯迭代法,以年度总费用(TAC)最小为目标函数,确定了最佳工艺条件:低压塔理论板数19,原料进料位置为第12块塔板,回流板位置为第9块板,回流比0.7;高压塔理论板数21,进料位置第14块塔板,回流比1,所得甲醇和苯产品纯度均达到了99.9%。同时,探究了变压精馏分离甲醇-苯工艺的部分热集成方案,与传统变压精馏相比可节能42.7%,可为甲醇-苯分离的实验研究及其他共沸体系的分离提供参考。  相似文献   

8.
采用分壁式精馏塔分离乙醇-正丙醇-正丁醇三元物系,通过Aspen Plus软件对其进行严格计算.模拟优化之后的塔设备参数和操作条件为:主塔理论板数为35块,进料段理论板数为16块,回流比为9.15,在进料段的第9块板处进料,侧线出料位置为第18块板,隔板的上下端连接位置分别为主塔第10块板和第27块板.与常规的两塔精馏相比,再沸器热负荷减少33.79%.  相似文献   

9.
谢萍  翁居轼  冯晖 《广东化工》2012,39(17):168-170
文章利用Aspen Plus化工模拟软件中的严格计算法RadFrac单元操作模块对椰子油脂肪酸进行了连续减压精馏分离模拟。考察了塔板数、回流比、进料位置对分离效果的影响。结果表明:采用两个精馏塔B1塔和B2塔串联操作,操作压强为2500 Pa(绝压),原料进料质量流率20 kg/h,B1塔理论板数为15,第8块塔板进料,回流比为2(体积比),塔顶可得到产物辛酸的质量流率为8.675 kg/h,质量分数可达98.58%及回收率可达99.83%。塔底物料经B2进一步分离,B2塔板数为15,第9块塔板进料,回流比为1,塔顶可得到产物癸酸的质量流率为10.86 kg/h,质量分数为99.79%及回收率为98.81%。模拟结果对实验研究及工业化生产具有指导意义。  相似文献   

10.
以环己烷单效蒸馏系统的实际操作为依据,应用Aspen Plus软件对环己烷单效蒸馏系统进行模拟和节能改造,并对改造后出现的操作问题进行了分析和讨论,确定出常-减压双效精馏改造方案.模拟优化结果为前塔进料板位置为第10块板,回流比为0.52;后塔进料板位置为第6块板,在处理量相同情况下,常-减压蒸馏比单效蒸馏节约蒸汽量6.01t/h,节能35%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号