首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work examines the effect of weld strength mismatch on fracture toughness measurements defined by J and CTOD fracture parameters using single edge notch bend (SE(B)) specimens. A central objective of the present study is to enlarge on previous developments of J and CTOD estimation procedures for welded bend specimens based upon plastic eta factors (η) and plastic rotational factors (r p ). Very detailed non-linear finite element analyses for plane-strain models of standard SE(B) fracture specimens with a notch located at the center of square groove welds and in the heat affected zone provide the evolution of load with increased crack mouth opening displacement required for the estimation procedure. One key result emerging from the analyses is that levels of weld strength mismatch within the range ±20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens with relatively large weld grooves. The present study provides additional understanding on the effect of weld strength mismatch on J and CTOD toughness measurements while, at the same time, adding a fairly extensive body of results to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.  相似文献   

2.
The heat affect zone (HAZ) is in many cases considered to be the most critical part of a weldment. In this paper, the effect of crack size and weld metal mismatch on the HAZ cleavage toughness of wide plate specimens with X-groove has been investigated by the J-Q-M theories and a simple micromechanism for cleavage fracture. Two crack sizes have been studied (a/w = 0.1 and 0.3). In the analyses, the HAZ yield strength is assumed to be higher than the base metal. For each crack size, weld metal local overmatch and local evenmatch with respect to the HAZ are considered. For a given global strain, the results indicate that weld metal overmatch and evenmatch yield the same crack tip loading in terms of J-integral for a/w = 0.3. For a/w = 0.1, overmatch gives lower crack tip loading than evenmatch. For a given crack tip loading, weld metal local evenmatch in general results in less effective crack tip loading than the overmatch. Overmatch is detrimental to HAZ toughness, but this detrimental effect becomes less significant when the crack size decreases.  相似文献   

3.
This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, [`(s)]w{\bar{{\sigma}}_w}, as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.  相似文献   

4.
In steel welds there is often a large variation in fracture toughness and mechanical properties between the weld metal, base material and the various heat affected zone (HAZ) microstructures. The stress field in front of a crack in a weldment can be noticeably affected by the strength mismatch between the weld metal, HAZ and the base material. The crack position relative to the various microstructures will clearly influence the strength mismatch effect. In this paper the influence of crack tip positioning on the fracture performance of strength mismatched steel welds has been studied both experimentally and by FEM analysis. For a mismatched weld with local brittle zones small changes in crack tip location can give considerable changes in the fracture performance of a CTOD specimen. A high degree of strength mismatch increases the effect of crack positioning. Weld metal overmatch increases the stress level in the heat affected zone due to material constraint and thereby reduces the cleavage fracture resistance of the weldment when the coarse grained HAZ (CGHAZ) controls the fracture. The detrimental effect of high overmatch is most pronounced for specimens with notch position at fusion line and a short distance into the brittle CGHAZ. The Weibull stress has been shown to be a suitable fracture parameter in the case where one microstructure clearly controls the cleavage fracture and the calculation of the Weibull stress therefore can be limited to this zone.  相似文献   

5.
The fracture toughness in an elastic-plastic material joined by a laser weld is analyzed for steady-state crack growth along the weld. The analysis is performed for laser welds in steel. Laser welding gives high mismatch between the yield stress within the weld and that in the base material, due to the fast thermic cycle that the material undergoes in welding. The material is described by J 2-flow theory, and the analysis is performed using a special numerical algorithm, in which the finite element mesh remains fixed relative to the tip of the growing crack, so that the material moves through the mesh. Fracture is modelled by using a cohesive zone criterion in front of the crack tip along the fracture zone. It is found that in general a thinner laser weld gives a higher interface toughness. Furthermore, it is shown that the preferred path of the crack is in the base material slightly outside the weld; a phenomenon also observed in experiments.  相似文献   

6.
This work focuses on an evaluation procedure to determine the elastic?Cplastic J-integral and Crack Tip Opening Displacement (CTOD) fracture toughness based upon the ??-method for C(T) fracture specimens made of homogeneous and welded steels. The primary objective of this investigation is to enlarge on previous developments of J and CTOD estimation procedures for this crack configuration while, at the same time, addressing effects of strength mismatch on the plastic ??-factors. The present analyses enable the introduction of a larger set of factors ?? for a wide range of crack sizes (as measured by the a/W-ratio) and material properties, including different levels of weld strength mismatch, applicable to pipeline and pressure vessel steels. Very detailed non-linear finite element analyses for plane-strain and 3-D models of C(T) fracture specimens with centerline-cracked welds provide the evolution of load with increased load-line and crack mouth opening displacement required for the estimation procedure. Overall, the present study, when taken together with previous investigations, provides a fairly extensive body of results to determine parameters J and CTOD for different materials using C(T) specimens with varying overmatch conditions.  相似文献   

7.
It is now generally agreed that the applicability of a one-parameter J-based ductile fracture approach is limited to so-called high constraint crack geometries, and that the elastic-plastic fracture toughness J1c, is not a material constant but strongly specimen geometry constraint-dependent. In this paper, the constraint effect on elastic-plastic fracture toughness is investigated by use of a continuum damage mechanics approach. Based on a new local damage theory for ductile fracture(proposed by the author) which has a clear physical meaning and can describe both deformation and constraint effects on ductile fracture, a relationship is described between the conventional elastic-plastic fracture toughness, J1c, and crack tip constraint, characterized by crack tip stress triaxiality T. Then, a new parameter Jdc (and associated criterion, Jd=Jdc) for ductile fracture is proposed. Experiments show that toughness variation with specimen geometry constraint changes can effectively be removed by use of the constraint correction procedure proposed in this paper, and that the new parameter Jdc is a material constant independent of specimen geometry (constraint). This parameter can serve as a new parameter to differentiate the elastic-plastic fracture toughness of engineering materials, which provides a new approach for fracture assessments of structures. It is not necessary to determine which laboratory specimen matches the structural constraint; rather, any specimen geometry can be tested to measure the size-independent fracture toughness Jdc. The potential advantage is clear and the results are very encouraging.  相似文献   

8.
Based on extensive two‐dimensional (2D) finite element (FE) analyses, the present work provides the plastic η factor solutions for fracture toughness J‐integral testing of heterogeneous specimens with weldments. Solutions cover practically interesting ranges of strength mismatch and relative weld width, and are given for three typical geometries for toughness testing: a middle cracked tension (M(T)) specimen, single edge cracked bend (SE(B)) specimen and (C(T)) specimen. For mismatched M(T) specimens, both plane strain and plane stress conditions are considered, whereas for SE(B) and C(T) specimens, only the plane strain condition is considered. For all cases, only deep cracks are considered, and an idealized butt weld configuration is considered, where the weld metal strip has a rectangular cross section. Based on the present solutions for the strength mismatch effect on plastic η factors, a window is provided, within which the homogeneous J estimation procedure can be used for weldment toughness testing. The effect of the weld groove configuration on the plastic η factor is briefly discussed, concluding the need for further systematic analysis to provide guidance to practical toughness testing.  相似文献   

9.
High temperature fracture toughness tests were performed on welded specimens of 1Cr-1Mo-14 V steel with different levels of mismatch between the base metal and the weld metal and the cracks lying along the fusion line. A wide range of fracture toughness values were obtained for weldments, as opposed to a unique value of JIC and a unique J-R curve typically obtained for homogeneous materials. Detailed observations of the crack path within the weldments were made to understand the wide scatter in the fracture toughness behavior. The yield strength mismatch between the base metal and the weld metal was found to directly influence the stable crack path, and hence the fracture toughness behavior. The denomination of ‘apparent fracture toughness’ was used to describe the variability of the fracture toughness in the weld region due to microstructure and mechanical property gradients. The apparent fracture toughness exhibited a minima at a fixed distance from the fusion line for a specific weld. The relative position of the fatigue precrack with respect to the fusion line and the region of low fracture toughness was also shown to influence the measured fracture toughness behavior of the specimen. A frame-work is provided for representing the weld fracture toughness behavior and the associated variability due to microstructural gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Fibre‐metal laminates (FMLs) are structural composites designed with the aim of producing very low fatigue crack‐propagation rate, damage‐tolerant and high‐strength materials, if compared to aeronautical Al alloys. Their application in aeronautical structures demands a deep knowledge of a wide set of mechanical properties and technological values, including both fracture toughness and residual strength. The residual strength of FMLs have been traditionally determined by using wide centre‐cracked tension panels M(T). The use of this geometry requires large quantities of material and heavy laboratory facilities. In this work, fracture toughness ( JC) of some unidirectional FMLs laminates was measured using a recently proposed methodology for critical fracture toughness evaluation on compact tension C(T) and single‐edge bend SE(B) specimens. Additionally, residual strength values of wider M(T) specimens with different widths (W from 150 to 200 mm) and several crack to width ratios (2a/W) were experimentally obtained. Some experimental residual strength values of M(T) specimens (W from 150 to 400 mm and different 2a/W ratios) of Arall were also obtained from the bibliography. Based on JC results from C(T) and SE(B) specimens, and either using or not using crack‐tip plasticity corrections, the residual strengths of the M(T) specimens were predicted and compared to the experimental ones. The results showed good agreement, especially when crack‐tip plasticity corrections were applied.  相似文献   

11.
Single edge-notched bend (SENB) specimens containing shallow cracks (a/W < 0.2) are commonly employed for fracture testing of ferritic materials in the lower-transition region where extensive plasticity (but no significant ductile crack growth) precedes unstable fracture. Critical J-values J c ) for shallow crack specimens are significantly larger (factor of 2–3) than the J c )-values for corresponding deep crack specimens at identical temperatures. The increase of fracture toughness arises from the loss of constraint that occurs when the gross plastic zones of bending impinge on the otherwise autonomous crack-tip plastic zones. Consequently, SENB specimens with small and large a/W ratios loaded to the same J-value have markedly different crack-tip stresses under large-scale plasticity. Detailed, plane-strain finite-element analyses and a local stress-based criterion for cleavage fracture are combined to establish specimen size requirements (deformation limits) for testing in the transition region which assure a single parameter characterization of the crack-tip stress field. Moreover, these analyses provide a framework to correlate J c )-values with a/W ratio once the deformation limits are exceeded. The correlation procedure is shown to remove the geometry dependence of fracture toughness values for an A36 steel in the transition region across a/W ratios and to reduce the scatter of toughness values for nominally identical specimens.  相似文献   

12.
This study presents the effect of residual stresses on cleavage fracture toughness by using the cohesive zone model under mode I, plane stain conditions. Modified boundary layer simulations were performed with the remote boundary conditions governed by the elastic K‐field and T‐stress. The eigenstrain method was used to introduce residual stresses into the finite element model. A layer of cohesive elements was deployed ahead of the crack tip to simulate the fracture process zone. A bilinear traction–separation‐law was used to characterize the behaviour of the cohesive elements. It was assumed that the initiation of the crack occurs when the opening stress drops to zero at the first integration point of the first cohesive element ahead of the crack tip. Results show that tensile residual stresses can decrease the cleavage fracture toughness significantly. The effect of the weld zone size on cleavage fracture toughness was also investigated, and it has been found that the initiation toughness is the linear function of the size of the geometrically similar weld. Results also show that the effect of the residual stress is stronger for negative T‐stress while its effect is relatively smaller for positive T‐stress. The influence of damage parameters and material hardening was also studied.  相似文献   

13.
This work deals with the influence of crack depth on the fracture toughness at initiation of crack growth and the constraint factor in relationship between the J-integral and the crack tip opening displacement (CTOD). A series of tests were performed on high strength low alloyed HT80 steel welds, and the critical J-integral and CTOD were determined using the load versus load point displacement record from three-point bend specimens with 0.05 < a/W < 0.5. It was found that the fracture toughness for shallow cracks at the onset of crack growth was larger than that for deep cracks for the steel welds tested, but it is felt that there is no fixed relationship between these values in the welds tested. The constraint factor is also a function of crack depth, and values of the factor increase from 0.5 to 1.5 when a/W increases from about 0.05 to 0.5. The factors are not very sensitive to the crack tip materials (HAZ or weld metal) in the welds tested.  相似文献   

14.
Fracture criterion of the J-integral finds wide application in the integrity evaluation of welded components, but there exist some confused problems such as the dependence of the fracture toughness on the strength mis-matching and specimen geometry which need to be clarified. It is rough and unsuitable to attribute the variation of J-integral fracture parameter simply to the effect of mechanical heterogeneity. In the present paper, a two-dimensional finite element method is employed to analyze the distribution and variation of crack tip field of welded joints with different strength mis-matching in four kinds of specimen geometry, and then the validity of J-dominance in welded joints is investigated. It is found that the crack tip field of mis-matched joint is different from that of either the weld metal or base metal of which the joint is composed, but it is situated between those of weld metal and base metal. Under the plane strain, there is obvious difference in stress triaxiality for different strength mis-matched joints. The validity of J-dominance in welded joint can not be obtained by comparing whether the stress triaxiality meets that required by the HRR solution because of the existence of mechanical inhomogeneity. By ascertaining if the stress triaxiality of welded joint near the crack tip is dependent of specimen geometry, the conclusion can be arrived at: for plane stress the validity of J-dominance is valid, whilst for plane strain the validity of J-dominance is lost. Based on the above, attempt has been made to point out that the influence of mechanical heterogeneity on the fracture toughness of weldment arises from the variation of constraint intensity-crack tip stress triaxiality. Compared with the effect of mechanical heterogeneity on the stress triaxiality, the losing of validity of J-dominance in mis-matched joint under plane strain may play a more critical role in the variation of J-integral fracture parameter of weldment.  相似文献   

15.
This study examines crack front length and constraint loss effects on cleavage fracture toughness in ferritic steels at temperatures in the ductile-to-brittle transition region. A local approach for fracture at the micro-scale of the material based on the Weibull stress is coupled with very detailed three-dimensional models of deep-notch bend specimens. A new non-dimensional function g(M) derived from the Weibull stress density describes the overall constraint level in a specimen. This function remains identical for all geometrically similar specimens regardless of their absolute sizes, and thus provides a computationally simple approach to construct (three-dimensional) fracture driving force curves w vs. J, for each absolute size of interest. Proposed modifications of the conventional, two-parameter Weibull stress expression for cumulative failure probability introduce a new threshold parameter w–min. This parameter has a simple calibration procedure requiring no additional experimental data. The use of a toughness scaling model including w–min>0 increases the deformation level at which the CVN size specimen loses constraint compared to a 1TSE(B) specimen, which improves the agreement of computational predictions and experimental estimations. Finally the effects of specimen size and constraint loss on the cleavage fracture reference temperature T 0 as determined using the new standard ASTM E1921 are investigated using Monte Carlo simulation together with the new toughness scaling model.  相似文献   

16.
The fracture toughness and deformation mechanism of PP/CaCO3 (15 wt.%) composites were studied and related to load-bearing capacity of the particles. To alter the load-bearing capacity of the particles, different particle sizes (0.07–7 μm) with or without stearic acid coating were incorporated. The fracture toughness of the composites was determined using J-Integral method and the deformation mechanism was studied by transmission optical microscopy of the crack tip damage zone. It was observed that the load-bearing capacity of the particles decreased by reduction of particle size and application of coating. A linear relationship between normalized fracture toughness and inverse of load-bearing capacity of particles was found. The crack tip damage zone in composites, which consists in massive crazing, further grows by reduction in load-bearing capacity.  相似文献   

17.
The crack tip stress-field in a trimaterial finite element model has been examined. The model represents an idealised steel weldment with a crack located at the fusion line. The model was loaded with a K I displacement field to simulate small scale yielding conditions. The effect of changing the weld metal plastic properties and the HAZ layer thickness on the crack tip stress-field was studied, keeping the material properties of the HAZ and base metal constant. The results show that the calculated J-integral remains path independent in the trimaterial model. It is confirmed that the crack tip stress-fields can be normalised by the J-integral. The mismatch constraint can be characterised by a difference field, which is independent of the normalised distance from the crack tip. The results show that changes of HAZ thickness only have a small effect on the stress-fields close to the crack tip. The hardenability of the weld metal influences on the slope of the crack tip stress distribution, but for small changes in hardenability, this effect can be neglected. The results indicate that the difference fields show some radial dependence when a homogeneous reference field is used, but the radial dependence was removed by introducing an inhomogeneous reference field. The effect of changes in the weld metal yield strength has been described with a two parameter (J-M) formulation using the inhomogeneous reference field.  相似文献   

18.
The paper addresses the problem of crack extension in a weld in an engineering structure for the case where the weld crack is parallel to the plane of the weld, a situation for which the J-integral is path independent with regard to any contour surrounding a crack tip. Assuming that crack extension is associated with the attainment of a critical crack tip opening displacement w, a theoretical analysis based on the strip yield representation of plastic deformation shows, for the case where the weld material is softer than the parent material, how the relation between the value of J at the onset of crack extension and w depends on the flow properties of the weld and parent materials, the crack size and the weld thickness.  相似文献   

19.
The crack propagation direction may affect weld metal fracture behavior. This fracture behavior has been investigated using two sets of single edge notched bend (SENB) specimens; one with a crack propagating in the welding direction (B×2B) and the other with a crack propagating from the top in the root direction (B×B) of a welded joint. Two different weld metals were used, one with low and one with high toughness values. For Weld Metal A, two specimen types have been used (B×B and B×2B) both with deep cracks. The weld metal A (with high toughness values) has reasonably uniform properties between weld root and cap. The resulting J-R curves show little effect of the specimen type, are ductile to the extent that the toughness exceeds the maximum Jmax, value allowed by validity limits and testing is in the large –scale yielding regime. In the case of weld metal B (with low toughness values) with two specimen types (B×B and B×2B) the B×B specimen has shallow cracks while the B×2B specimen has deep cracks. Both resulting J-R curves show unstable behavior despite the fact that the types of specimen and their constraints are different. The analysis has shown that crack propagation direction is most influential for a weldment with low toughness in the small scale yielding regime, whereas its influence diminishes due to ductile tearing during stable crack growth and large scale yielding. The results have shown that these effects are different in both the crack initiation phase and during stable crack growth, indicating a dependence on weld metal toughness and the microstructure of the weld metal. It can be concluded that, if resistance curves during stable crack growth do not show differences in both notch orientations, the fracture toughness values of the whole weld metal can be treated as uniform.  相似文献   

20.
In this paper, the effects of T‐stress on steady, dynamic crack growth in an elastic–plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J2 flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T‐stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T‐stress for both ductile and cleavage mode of crack growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号