首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple antenna systems: their role and impact in future wireless access   总被引:2,自引:0,他引:2  
Multiple antennas play an important role in improving radio communications. In view of this role, the area of multiple antenna communication systems is in the forefront of wireless research. This article reviews two key related aspects of multiple antenna communication systems: multiple access interference mitigation at the receiver via multi-user beamforming; and space-time modulation and coding for MIMO systems. It is shown that both multi-user and MIMO receivers share similar signal processing and complexity tradeoffs.. Following that, a general unified framework for assessing different types of space-time modulation for MIMO systems is introduced. These space-time modulation methods are then compared in terms of Shannon capacity over multipath channels. Key MIMO system performance and implementation issues are also highlighted.  相似文献   

2.
Ultra WideBand (UWB) transmissions are attractive for low power, baseband asynchronous multiple access and peer-to-peer wireless communications. Multiple Input Multiple Output (MIMO) technology is useful in combating against multipath and at the same time improves system performance by using multielement antennas at both transmitter and receiver. This letter proposes a time hopping M-ary UWB systems using V-BLAST algorithm, and power control is considered for better performance. Simulations are provided to compare performance with different antennas.  相似文献   

3.
This paper investigates the problem of resource allocation in a multiple-input multiple-output (MIMO) OFDM-based system, wherein multiple multicast groups exist. Multicasting is a transmission technique which enables a transmitter to communicate via a single wireless link with multiple receivers simultaneously. Moreover, the presence of multiple antennas in both transmitter and receiver enhances significantly the system spectral efficiency. MIMO technology along with multicasting offers major advantages to wireless systems. However, optimum exploitation of these technologies adds significant complexity to the system which makes very difficult any possible practical implementation. Another important issue of such systems is their capacity to ensure to all users a certain level of QoS. To that end, we propose a low complexity fair resource allocation algorithm aiming at ensuring a certain amount of resources to all users when multicasting is applied. Validation of the proposed solution is achieved through extensive simulation and it is compared to other multicast schemes for MIMO systems which exist in literature. Numerical results and complexity analysis show the feasibility of the proposed algorithm.  相似文献   

4.
This letter considers multiple-input multiple-output (MIMO) systems with bit-interleaved coded modulation. An approximate log-likelihood decoding approach is presented based on a zero-forcing receiver. The implementation complexity is low compared to the maximum likelihood (ML) receiver. We show that the performance gap, compared to ML, reduces when either the number of receive antennas or the modulation order is increased. Results are presented for both narrowband fast-fading, and orthogonal frequency division multiplexing (OFDM) channels. In the OFDM case, we demonstrate performance gaps as low as 0.5 dB for MIMO extensions to the IEEE 802.11a wireless local area network physical layer standard.  相似文献   

5.

Fifth and future generation (5G and B5G) wireless networks aim to serve users with higher data rates and lower latency. Data traffic due to the rapid growth in communication has motivated the study of Multiple Input Multiple Output (MIMO) systems. They utilize multiple antennas in both transmitter and receiver sides. It is necessary to improve the existing technology to achieve fast and reliable communication. In this research work, a rectangular array antenna based hybrid beamforming in a massive MIMO model has been proposed to improve the spectral efficiency of the system. Thus channel capacity with small RF chains is used. To achieve the high signal strength in the main lobe, Chebyshev tapering has been used to suppress the side lobes signals. In this manner, the proposed Hybrid Beamforming for Massive Output MIMO has been realized with a small complexity and higher spectral efficiency. In this research work, the spectral efficiency of both proposed Hybrid and fully-digital beamforming with a different number of RF chains for a various number of antennas at the transmitter, the receiver side has been analyzed. From the simulation results, it has been observed that the proposed rectangular array antenna based Hybrid beamforming in a massive MIMO system reduces the computational complexity up to 99% as compared with conventional fully digital beamforming to achieve the same spectral efficiencies, which is a productive model for 5G wireless networks.

  相似文献   

6.
刘辉  周灵  陈东锋  张复春 《电讯技术》2012,52(4):544-547
实际无线通信环境中发送天线之间以及接收天线之间存在相关性.针对以上特点,从多径MIMO信道的特性出发,首先建立发射天线相关系数矩阵和接收天线相关系数矩阵,并将它们引入无线信道的莱斯MIMO信道模型中.最后通过分析LOS MIMO信道相关模型和瑞利衰落MIMO信道相关模型,给出了具体的建模步骤.仿真结果表明采用本文方法产生的信道模型的MIMO系统误码率更低,从而验证了该信道模型能够较好地模拟MIMO系统的空间信道.  相似文献   

7.
Implementation of a MIMO OFDM-based wireless LAN system   总被引:11,自引:0,他引:11  
The combination of multiple-input multiple-output (MIMO) signal processing with orthogonal frequency division multiplexing (OFDM) is regarded as a promising solution for enhancing the data rates of next-generation wireless communication systems operating in frequency-selective fading environments. To realize this extension of OFDM with MIMO, a number of changes are required in the baseband signal processing. An overview is given of the necessary changes, including time and frequency synchronization, channel estimation, synchronization tracking, and MIMO detection. As a test case, the OFDM-based wireless local area network (WLAN) standard IEEE 802.11a is considered, but the results are applicable more generally. The complete MIMO OFDM processing is implemented in a system with three transmit and three receive antennas, and its performance is evaluated with both simulations and experimental test results. Results from measurements with this MIMO OFDM system in a typical office environment show, on average, a doubling of the system throughput, compared with a single antenna OFDM system. An average expected tripling of the throughput was most likely not achieved due to coupling between the transmitter and receiver branches.  相似文献   

8.
This paper discusses the packet error rate (PER) performance of multiple-input multiple-output (MIMO) wireless systems. We focus our discussion on communication systems based on the IEEE 802.11a/g standard. In particular, we study the performance of spatial multiplexing systems with joint encoding at the transmitter and linear detection at the receiver. We show that spatial multiplexing systems based on minimum mean square error (MMSE) or zero forcing (ZF) demultiplexing benefit greatly from antenna subset selection. These results agree with recent analytical results showing the equivalence in diversity order between a full system (all receive antennas) and a system with antenna selection.  相似文献   

9.
Performance analysis and design optimization of LDPC-coded MIMO OFDM systems   总被引:11,自引:0,他引:11  
We consider the performance analysis and design optimization of low-density parity check (LDPC) coded multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems for high data rate wireless transmission. The tools of density evolution with mixture Gaussian approximations are used to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios (SNRs) for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system configurations, which include a different number of antennas, different channel models, and different demodulation schemes; the optimized performance is compared with the corresponding channel capacity. It is shown that along with the optimized irregular LDPC codes, a turbo iterative receiver that consists of a soft maximum a posteriori (MAP) demodulator and a belief-propagation LDPC decoder can perform within 1 dB from the ergodic capacity of the MIMO OFDM systems under consideration. It is also shown that compared with the optimal MAP demodulator-based receivers, the receivers employing a low-complexity linear minimum mean-square-error soft-interference-cancellation (LMMSE-SIC) demodulator have a small performance loss (< 1dB) in spatially uncorrelated MIMO channels but suffer extra performance loss in MIMO channels with spatial correlation. Finally, from the LDPC profiles that already are optimized for ergodic channels, we heuristically construct small block-size irregular LDPC codes for outage MIMO OFDM channels; as shown from simulation results, the irregular LDPC codes constructed here are helpful in expediting the convergence of the iterative receivers.  相似文献   

10.
Multiple transmit and receive antenna arrays can be used to form multiple input and multiple output (MIMO) systems for diversity and multiplexing in wireless communications. In this paper, we develop iterative signal-detection schemes based on energy spreading transform (EST) (T. Hwang and Y. Li) for MIMO channels. The EST in a MIMO system improves signal-detection performance by spreading the symbol energy over the space and time domain. It also enables iterative signal detection without employing channel coding. Analytical and simulation results demonstrate that the performance of the proposed schemes is very close to that of the genie-aided receiver when there are a sufficiently large number of receive antennas and signal-to-noise ratio (SNR) is above a threshold  相似文献   

11.
Single carrier‐frequency division multiple access (SC‐FDMA) has been adopted as the uplink transmission standard in fourth generation cellular network to enable the power efficiency transmission in mobile station. Because multiuser MIMO (MU‐MIMO) is a promising technology to fully exploit the channel capacity in mobile radio network, this paper investigates the uplink transmission of SC‐FDMA systems with orthogonal space frequency block codes (SFBC). Two linear MU‐MIMO receivers, orthogonal SFBC (OSFBC) and minimum mean square error (MMSE), are derived for the scenarios with limited number of users or adequate receive antennas at base station. In order to effectively eliminate the multiple access interference (MAI) and fully exploit the capacity of MU‐MIMO channel, we propose a turbo MU‐MIMO receiver, which iteratively utilizes the soft information from maximum a posteriori decoder to cancel the MAI. By the simulation results in several typical MIMO channels, we find that the proposed MMSE MU‐MIMO receiver outperforms the OSFBC receiver over 1 dB at the cost of higher complexity. However, the proposed turbo MU‐MIMO receivers can effectively cancel the MAI under overloaded channel conditions and really achieve the capacity of MU‐MIMO channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Linear receivers are an attractive low-complexity alternative to optimal processing for multiple-antenna multiple-input multiple-output (MIMO) communications. In this paper, we characterize the information-theoretic performance of MIMO linear receivers in two different asymptotic regimes. For fixed number of antennas, we investigate the limit of error probability in the high-signal-to noise-ratio (SNR) regime in terms of the diversity-multiplexing tradeoff (DMT). Following this, we characterize the error probability for fixed SNR in the regime of large (but finite) number of antennas.As far as the DMT is concerned, we report a negative result: we show that both linear zero-forcing (ZF) and linear minimum mean- square error (MMSE) receivers achieve the same DMT, which is largely suboptimal even in the case where outer coding and deAcircnot coding is performed across the antennas. We also provide an apAcircnot proximate quantitative analysis of the markedly different behavior of the MMSE and ZF receivers at finite rate and nonasymptotic SNR, and show that while the ZF receiver achieves poor diversity at any finite rate, the MMSE receiver error curve slope flattens out progressively, as the coding rate increases. When SNR is fixed and the number of antennas becomes large, we show that the mutual information at the output of an MMSE or ZF linear receiver has fluctuations that converge in distribution to a Gaussian random variable, whose mean and variance can be characterized in closed form. This analysis extends to the linear reAcircnot ceiver case a well-known result previously obtained for the optimal receiver. Simulations reveal that the asymptotic analysis captures accurately the outage behavior of systems even with a moderate number of antennas.  相似文献   

13.
An overview of MIMO communications - a key to gigabit wireless   总被引:58,自引:0,他引:58  
High data rate wireless communications, nearing 1 Gb/s transmission rates, is of interest in emerging wireless local area networks and home audio/visual networks. Designing very high speed wireless links that offer good quality-of-service and range capability in non-line-of-sight (NLOS) environments constitutes a significant research and engineering challenge. Ignoring fading in NLOS environments, we can, in principle, meet the 1 Gb/s data rate requirement with a single-transmit single-receive antenna wireless system if the product of bandwidth (measured in hertz) and spectral efficiency (measured in bits per second per hertz) is equal to 10/sup 9/. A variety of cost, technology and regulatory constraints make such a brute force solution unattractive, if not impossible. The use of multiple antennas at transmitter and receiver, popularly known as multiple-input multiple-output (MIMO) wireless, is an emerging cost-effective technology that offers substantial leverages in making 1 Gb/s wireless links a reality. The paper provides an overview of MIMO wireless technology covering channel models, performance limits, coding, and transceiver design.  相似文献   

14.
吕磊  张忠培 《电子与信息学报》2008,30(12):2951-2954
无线通信中的多天线(MIMO)技术是提高系统容量的主要方法,在慢衰落信道下可以将接收端获得的信道信息(CSI)反馈到发送端以提高系统的性能.传统的反馈-预编码方案奇异值分解(SVD)法但受空间相关特性和传统VBLAST系统对收、发天线数目要求的影响而限制了它在实际系统中的应用.该文提出一种自适应多天线传输方案,其采用了统一信道参数反馈模型和空时分组编码(STBC),实现了一种可以用于各种空间相关特性和各种收、发天线数的多天线传输方案可以克服SVD方案的以上缺点.文中仿真也验证了该系统的接收天线可以比发射天线少,并且能够在高相关性信道下工作.  相似文献   

15.
We consider the problem of joint space-time decoding and multiaccess interference (MAI) rejection in multiuser multiple-input multiple-output (MIMO) wireless communication systems. We address the case when both the receiver and multiple transmitters are equipped with multiple antennas and when space-time block codes (STBCs) are used to send the data simultaneously from each transmitter to the receiver. A new linear receiver structure is developed to decode the data sent from the transmitter-of-interest while rejecting MAI, self-interference, and noise. The proposed receivers are designed by minimizing the output power subject to constraints that zero-force self-interference and/or preserve a unity gain for all symbols of the transmitter-of-interest. Simulation results show that in multiaccess scenarios, the proposed techniques have substantially lower symbol error rates as compared with the matched filter (MF) receiver, which is equivalent to the maximum likelihood (ML) space-time decoder in the point-to-point MIMO communication case.  相似文献   

16.
天线选择技术在MIMO中的应用   总被引:1,自引:0,他引:1  
MIMO系统是当今无线通信领域的重要技术,但是它存在一个严重的缺陷:随着天线数量增多,系统的复杂度和成本大大增加。天线选择技术被认为是降低MIMO系统复杂度的有力方案。本文详细阐述了天线选择技术在MIMO系统中的应用,它能在保证系统传输速率的同时降低复杂度和误码率。  相似文献   

17.
MIMO信道在巷道中的GBDB模型分析   总被引:1,自引:0,他引:1  
多输入多输出(MIMO)技术可以有效减弱无线传输多径衰落现象。建立矿井巷道环境下MIMO信道的三维GBDB模型,推导了该模型的空时相关函数,并对矿井下MIMO信道容量进行了数值仿真。结果表明,矿井巷道中的空间相关性对MIMO系统容量的影响很大,增加接收端天线数量、增大天线间距可以大幅度提高系统的信道容量。  相似文献   

18.
多天线无线数据通信系统中多用户分集的研究   总被引:1,自引:0,他引:1  
研究当接收天线不少于发送天线时多输入多输出(MIMO)系统的多用户分集能力。首先从理论上分析了发送天线个数等于1和2时最大似然接收和迫零接收系统的平均吞吐量和调度增益,以及仿真分析了发送天线个数大于2时系统性能。理论分析和仿真表明:在多用户的MIMO系统中,接收的平均信噪比、用户个数、收发天线个数、接收机的结构等对于多用户分集有很大的影响。当发送天线个数为1时,接收天线较少(1,2,3)和平均信噪比为.10dB时调度增益很大,但调度增益随着天线个数和发送功率增大急剧下降。和最大似然接收相比,迫零接收具有更大的多用户分集增益,因此迫零接收机的吞吐量可以很容易超过最大似然接收机。  相似文献   

19.
针对室内漫射光无线通信问题,提出一种采用离散多音/正交幅度调制和空时块编码的多输入多输出(MIMO)光无线通信技术.基于离散多音/正交幅度调制技术,并通过考虑室内全光无线信道的脉冲响应和其噪声特性,建立起室内红外光无线链路的信道模型;再采用空时块编码技术,提出一种实现室内漫射光无线通信的MIMO无线通信系统,并通过分析...  相似文献   

20.
The latest evolution of wireless LAN products recognizes the old adage that ‘two is better than one,’ resulting in the development of the IEEE 802.11n specification, better known as multiple‐input/multiple‐output (MIMO). Although ratification of the IEEE 802.11n specification isn't expected until the later part of 2006, several vendors over the past year introduced hardware products that double the throughput of current 802.11 g products owing to the ability of such hardware to transmit via multiple antennas and radios. One such product is the Belkin Pre‐N wireless router, which is the focus of this issue's column  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号