首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
基于专家系统和遗传算法的换热网络的建模和优化   总被引:2,自引:0,他引:2       下载免费PDF全文
A new superstructure from of heat exchanger networks(HEN) is proposed based on expert system (ES). The new superstructure from is combined with the practical engineering.The different investment cost formula for different heat exchanger is also presented based on ES.The mathematical model for the simultaneous optimization of network configuration is established and solved by a genetic algorithm.This method can deal with larger scale HEN synthesis and the optimal HEN configuration is obtained automatically.Finally,a case study is presented to demonstrate the effectiveness of the method.  相似文献   

2.
Natural gas is transported from producing regions to consumption regions by using transmission pipelines at high pressures. At consumption regions, the pressure of natural gas is reduced in city gate stations(CGSs). Before the pressure reduction process, the temperature of natural gas is increased usually by using a water bath heater,which burns natural gas as fuel, to protect against freezing of natural gas. These types of heat exchangers have a low efficiency and consume a lot of fuel to generate the required heat. In the current study, the twisted configuration of the heating coil is proposed and investigated to enhance the heat transfer through a water bath heater with a nominal capacity of 1000 m~3·h~(-1). Firstly, the implementation procedure is validated with data collected from the CGS of Qaleh-Jiq(located in Golestan province of Iran). A very good agreement is achieved between the obtained results and the real data. Then, three different twist ratios are considered to examine the twisting effects. The proposed technique is evaluated in the terms of velocity, temperature, and pressure variations, and the results are compared with the conventional case, i.e. straight configuration. It is found that both the heat transfer rate and the pressure drop augment as the twist ratio is raised. Finally, it is concluded that the twisted tubes can reduce the length of the gas coil by about 12.5% for the model with low twist ratio, 18.75% for the model with medium twist ratio, and 25% for the model with high twist ratio as compared to the straight configuration.  相似文献   

3.
A general method has been developed for analyzing pressure buildup data from a well located in a system with both production and injection wells in a closed, bounded two-phase flow reservoir. The proposed method enables one to calculate the total mobility or permeability-thickness product, the skin factor, the average drainage-area pressure and the injection-production ratio (at the instant of shut-in) with accuracy from pressure buildup (or falloff) data dominated by a linear trend of reservoir pressure. Out of thousands of well tests, several typical field examples have been presented to illustrate the application of the proposed method for analyzing pressure transient data from a well located in a water-injection multiwell reservoir. And the possible application of this method to heterogeneous systems such as naturally fractured reservoirs is also discussed. Approaches to aid practicing engineers in verifying the buildup interpretation (or recognizing the interference of offset wells) are presented. Extension of the presented method to a gas well located in a multiwell gas reservoir is also suggested  相似文献   

4.
Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers. A group contribution method based on 27 groups is developed for the correlation of static dielectric constant of ionic liquids in this paper. The ionic liquids considered include imidazolium, pyridinium, pyrrolidinium, alkylammonium, alkylsulfonium, morpholinium and piperidinium cations and various anions. The data collected cover the temperature ranges of 278.15 343.15 K and static dielectric constant ranges of 9.4 85.6. The results of the method show a satisfactory agreement with the literature data with an average absolute relative deviation of 7.41%, which is generally of the same order of the experimental data accuracy. The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at different temperatures.  相似文献   

5.
A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.  相似文献   

6.
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis (CHFS) system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porons media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40%and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.  相似文献   

7.
Temperature sensitivity of waxy crude oils makes it difficult to study their flow behaviour in the presence of water especially near their wax appearance temperature(WAT). In this study a method was proposed and implemented to mitigate such difficulties which was applied in predicting mixture temperatures(Tm) of a typical Malaysian waxy crude oil and water flow in a horizontal pipe. To this end, two analytical models were derived firstly from calorimetry equation which based on developed two correlations for defining crude oil heat capacity actualized from the existed specific heat capacities of crude oils. The models were then applied for a set of experiments to reach the defined three predetermined Tm(26 °C, 28 °C and 30 °C). The comparison between the predicted mixture temperatures(Tm,1and Tm,2) from the two models and the experimental results displayed acceptable absolute average errors(0.80%, 0.62%, 0.53% for model 1; 0.74%, 0.54%, 0.52% for model 2). Moreover,the average errors for both models are in the range of standard error limits(±0.75%) according to ASTM E230.Conclusively, the proposed model showed the ease of obtaining mixture temperatures close to WAT as predetermined with accuracy of ± 0.5 °C approximately for over 84% of the examined cases. The method is seen as a practical reference point to further study the flow behaviour of waxy crudes in oil–water two-phase flow system near sensitive temperatures.  相似文献   

8.
Recovering waste heat from industrial processes is beneficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with ChemCad(R) 6.0.1.LiBr-H2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coefficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coefficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li-Br solution on coefficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coefficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.  相似文献   

9.
Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference contribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual temperature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective function, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the basis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calculation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in searching the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature difference contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construction material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.  相似文献   

10.
It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil refining process, the atmospheric distillation column is paid more attention to save energy. In this paper, the optimal problem of energy utilization efficiency of the atmospheric distillation column is solved by defining a new energy efficiency indicator — the distillation yield rate of unit energy consumption from the perspective of material flow and energy flow, and a soft-sensing model for this new energy efficiency indicator with respect to the multiple working conditions and intelligent optimizing control strategy are suggested for both increasing distillation yield and decreasing energy consumption in oil refining process. It is found that the energy utilization efficiency level of the atmospheric distillation column depends closely on the typical working conditions of the oil refining process, which result by changing the outlet temperature, the overhead temperature, and the bottom liquid level of the atmospheric pressure tower. The fuzzy C-means algorithm is used to classify the typical operation conditions of atmospheric distillation in oil refining process. Furthermore, the LSSVM method optimized with the improved particle swarm optimization is used to model the distillation rate of unit energy consumption. Then online optimization of oil refining process is realized by optimizing the outlet temperature, the overhead temperature with IPSO again. Simulation comparative analyses are made by empirical data to verify the effectiveness of the proposed solution.  相似文献   

11.
王永青  何宏舟 《化学工程》2012,40(2):66-69,78
可持续发展要求海水淡化系统不仅具有优良的经济性,还要具有优良的环境性能,目前综合考虑这二方面因素的研究还很少。文中从海水淡化系统的综合性能优化和评价出发,建立了统一性能指标(亦称淡水综合成本),该指标由淡水生产的经济成本和环境成本构成,以其为目标函数优化得到的系统具有最佳能源、经济、环境综合性能。淡水的综合成本、经济成本、环境成本还构成了海水淡化系统的多准则性能评价体系,据此可实现对不同海水淡化方法和装置的更全面、合理的评价。基于前面建立的性能准则,以近年来受到较多关注的低温多效蒸发海水淡化系统为例进行了计算、分析和讨论,研究结果验证了准则的合理性和有效性。  相似文献   

12.
A novel concept for integrating fuel cells with desalination systems is proposed and investigated in this work. Two unique case studies are discussed — the first involving a hybrid system with a reverse osmosis (RO) unit and the second — integrating with a thermal desalination process such as multi-stage flash (MSF). The underlying motivation for this system integration is that the exhaust gas from a hybrid power plant (fuel cell/turbine system) contains considerable amount of thermal energy, which may be utilized for desalination units. This exhaust heat can be suitably used for preheating the feed in desalination processes such as reverse osmosis which not only increases the potable water production, but also decreases the relative energy consumption by approximately 8% when there is an increase of just 8°C rise in temperature. Additionally, an attractive hybrid system application which combines power generation at 70%+ system efficiency with efficient waste heat utilization is thermal desalination. In this work, it is shown that the system efficiency can be raised appreciably when a high-temperature fuel cell co-generates DC power in-situ with waste heat suitable for MSF. Results indicate that such hybrid system could show a 5.6% increase in global efficiency. Such combined hybrid systems have overall system efficiencies (second-law base) exceeding those of either fuel-cell power plants or traditional desalination plants.  相似文献   

13.
多效蒸发(MED)是最主要的海水淡化方法之一,作为典型的慢时变系统,该系统在长期运行的过程中,往往会由于结垢导致蒸发器传热效率降低,造成减产甚至停工。为避免出现这种问题,工艺设计者会采取冗余设计,增大传热面积,这会导致设备投资的显著增加。为保证MED系统能够全周期运行,且尽可能减少总传热面积,提出了一种全周期优化设计方法。该方法以总传热面积最小为目标,对决策变量在整个周期内进行分段优化,同时考虑结垢过程、工艺变化以及控制方面的需求,对各效传热面积进行裕量设计,通过一步优化求解得到最优操作条件与最小传热面积,实现对慢时变系统的优化设计。最后,以八效MED海水淡化装置为例,同时用等面积法、等温差法、稳态优化设计方法以及全周期优化设计方法对系统进行设计。结果表明,全周期优化设计方法能够最大限度减少传热面积,大大降低了系统的设备投资,是一种有着良好应用前景的多效蒸发海水淡化系统优化设计方法。  相似文献   

14.
Rabah Gomri 《Desalination》2009,249(1):188-301
Among the numerous options to improve the energy efficiency of desalination plants stands out the absorption heat transformer. A heat transformer is a device, which can deliver heat at a higher temperature than the temperature of the fluid by which it is fed. Solar thermal energy can be used as heat input for single effect heat transformer while the high grade thermal energy delivered by the heat transformer can be used as heat source for water desalination.In this paper, an attempt has been made to study the combination: flat plate solar collectors, a single effect heat transformer and desalination system (distillation process) used to provide a beach house located in Skikda (East of Algeria; Latitude 36.52°N, Longitude 6.57°E) with drinking water. This system produces about 500 l of drinking water per day in July.Mathematical models of the solar flat plate collectors (FPC), absorption heat transformer (AHT) operating with the water/lithium bromide solution and the overall desalination system (WP) were developed to simulate the performance of this combination system. The energy and exergy analyses are carried out for each component of the system. All exergy losses that exist in this solar desalination system are calculated. Energy and exergy efficiencies are estimated.  相似文献   

15.
Potential of heat pipe technology in nuclear seawater desalination   总被引:1,自引:0,他引:1  
Heat pipe technology may play a decisive role in improving the overall economics, and public perception on nuclear desalination, specifically on seawater desalination. When coupled to the Low-Temperature Multi-Effect Distillation process, heat pipes could effectively harness most of the waste heat generated in various types of nuclear power reactors. Indeed, the potential application of heat pipes could be seen as a viable option to nuclear seawater desalination where the efficiency to harness waste heat might not only be enhanced to produce larger quantities of potable water, but also to reduce the environmental impact of nuclear desalination process. Furthermore, the use of heat pipe-based heat recovery systems in desalination plant may improve the overall thermodynamics of the desalination process, as well as help to ensure that the product water is free from any contamination which occur under normal process, thus preventing operational failure occurrences as this would add an extra loop preventing direct contact between radiation and the produced water. In this paper, a new concept for nuclear desalination system based on heat pipe technology is introduced and the anticipated reduction in the tritium level resulting from the use of heat pipe systems is discussed.  相似文献   

16.
In this paper, a new method for exergy analysis of humidification–dehumidification (HD) desalination systems is presented. It is based on the principle that there are exergy losses wherever the driving forces exist. A methodology was developed for investigating various parametric effects on exergy losses. The method involved developing a sink and source model as well as basic relations in the system. Results showed that the mass transfer phenomenon does not have any effect on the total exergy losses of the HD systems. Heater was the largest irreversibility resource. Flow rate of the Un-heated fluid and the maximum temperature of the system had key roles in the total exergy losses. An optimum point for the water-heated HD desalination system is also introduced. Finally, some comparisons are proposed between the water-heated and the air-heated HD desalination systems.  相似文献   

17.
建立了多个混流点的混流效组低温多效蒸发(LT-MED)海水淡化数学优化模型,将海水视为盐和水的混合物,其焓表达为温度的函数,降低优化模型的非线性程度,使其易于收敛。以比传热面积为优化目标分析了不同流程和参数对系统的影响。结果表明,在喷淋密度为30~80 g/(m·s)时,多混流点系统的造水比与单混流点系统相比提高了12.1%,比传热面积降低了8.4%,优化流程为5效+2效+2效组合;提高首效加热蒸汽温度可有效的减少换热面积,降低制水成本,对系统的造水比影响不大;增加系统效数,可以有效提高造水比。各效等面积蒸发方案造水比比不等面积方案略有下降,比传热面积略有增加。模拟结果与文献中相关数据吻合良好,可为低温多效蒸发海水淡化系统工程化设计提供技术支持。  相似文献   

18.
基于机械蒸汽压缩蒸发的油田污水脱盐系统及分析   总被引:6,自引:2,他引:4       下载免费PDF全文
李清方  刘中良  庞会中  张建  祝威 《化工学报》2011,62(7):1963-1969
针对油田污水污染物成分复杂、污染性强不适合膜法脱盐的特点,提出用机械蒸汽压缩蒸发(MVC)技术对油田污水进行脱盐处理的技术方案。建立了基于MVC的油田污水脱盐系统的工艺流程设计计算模型,系统分析了降膜蒸发器传热温差、油田污水温度和蒸发温度的影响。结果表明:传热温差是影响系统装置规模和运行电耗的控制因素,减小传热温差可以明显降低压缩机比电耗,付出的代价是系统比传热面积的增大;MVC系统的热力完善度高,无废热排放,油田污水温度越高,系统比传热面积减小;在其他条件允许的条件下,提高系统的运行温度有利于改善系统的性能。  相似文献   

19.
The present work concerns the design of a two-stage Organic Rankine Cycle (ORC) for RO desalination exploiting a thermal source of steady heat flow supply. Aiming at improving the efficiency of the single stage low temperature (in the range of 70-80 °C) Organic Rankine Cycle for RO desalination, a high temperature (in the order of 130 °C) stage is added. The basic principle of operation is that the heat extracted from the condensation of the high temperature stage (e.g. upper stage), evaporates the refrigerant of the low temperature stage (e.g. lower stage), thus increasing significantly the overall efficiency. In comparison with the two-stage Solar Organic Rankine Cycle (SORC) that was developed and designed in a previous work, waste heat is considered as a steady thermal source in this study, in order to identify the desalinating limits of the proposed system. It is expected the quantity of fresh water to increase significantly with the incorporation of a constant heat flow, as well as the efficiency of the system, since it operates almost constantly at full load the whole day long. The system design was done with the aid of TRNSYS V16.0 software.  相似文献   

20.
闫鸿志  胡斌  王如竹 《化工学报》2018,69(Z2):68-75
由于具有换热性能突出、制冷剂充注量小等优点,降膜蒸发器已被广泛应用于海水淡化等行业。然而,由于存在液位控制和干斑效应等实际操作问题,在压缩式制冷系统中,降膜蒸发器的设计还需要进一步优化。为解决这个问题,构建了水-水降膜蒸发器的仿真模型。采用有限元方法,获得了沿管程的温度、热流变化情况。对于现有的四管程降膜蒸发器,在80℃蒸发沸腾和0.4 kg·s−1的喷淋量下,为获得最大的换热量,进行了详细的模拟计算,基于模型的计算结果,建议采用两管程降膜、两管程满液的液位控制方式。本模型同时给出了沿管程换热时的传热系数分布情况,提出了满液降膜分界线,为后续的降膜蒸发器结构设计优化提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号