首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
采用浸渍法在煤基炭管上制备出聚丙烯腈基复合炭膜,考察了炭化条件对聚丙烯腈基炭膜性能的影响.结果表明,炭化温度和升温速率对炭膜的孔结构及分离性能的影响较大,而惰性气体流率和恒温时间的影响则相对较小.通过优化这些实验参数可以制备出复合效果好、表面光滑无缺陷的聚丙烯腈炭膜.  相似文献   

2.
以超高相对分子质量聚丙烯腈为原料 ,通过凝胶纺丝方法制备中空纤维膜。讨论了纺丝方法、相对分子质量和工艺条件 (纺丝原液浓度、气隙长度 )对中空纤维膜力学性能的影响 ;用 SEM测定了所制备的中空纤维膜的形态结构  相似文献   

3.
本发明涉及一种聚丙烯腈基中空碳纤维原丝及其制备方法。本发明的聚丙烯腈基中空碳纤维原丝可用于聚丙烯腈基中空碳纤维的制备。采用含衣康酸的丙烯腈二元共聚体系,或含衣康酸与丙烯酸甲酯的丙烯腈三元共聚体系湿法纺丝工艺配合圆弧狭缝喷丝板纺丝,可以得到多丝束中空碳纤维原丝、该原丝的外径尺寸与结构符合常规预氧化碳化工艺对原丝纤维的要求、纤维表面存在沟槽结构有利于复合材料界面性能的提高。  相似文献   

4.
聚丙烯腈中空纤维膜的研究   总被引:7,自引:0,他引:7  
本文对聚丙烯腈中空纤维膜的原料组成,中空纤维的纺丝工艺与膜性能的关系,以及纺制不同结构中空纤维膜的纺丝工艺和方法进行了综述,提出了纺制耐热性好的聚丙烯腈中空纤维3膜可能的方法和意义。  相似文献   

5.
以聚丙烯腈(PAN)为基体材料,聚酰胺纤维为增强材料,采用热致相分离法制备了聚酰胺纤维增强PAN的中空纤维膜,观察了中空纤维膜的微观结构,并研究了混合稀释剂、PAN及聚酰胺纤维对中空纤维膜性能的影响.结果表明:中空纤维膜表层分子排列致密,分离层存在纤维状孔隙结构;PAN与聚酰胺纤维的相容性良好;混合稀释剂用量为10%(...  相似文献   

6.
专利产品     
一种氧化铝基陶瓷中空纤维膜制备方法 本发明涉及一种增强型氧化铝基陶瓷中空纤维膜的制备方法。将主体膜材料氧化铝粉料和增强剂进行球磨混合,之后干燥研磨过筛。配制聚合物溶液,把混合均匀的陶瓷粉料加入其中并分散均匀,得到适宜粘度的纺丝液。纺丝液脱泡处理后由喷丝头挤出,经过一定干纺程进入外凝固浴,此期间发生相分离过程,同时形成中空纤维膜生坯。  相似文献   

7.
聚丙烯腈基螯合纤维的研究进展   总被引:4,自引:0,他引:4  
回顾了聚丙烯腈基螯合纤维近年的研究进展,介绍了聚丙烯腈基螯合纤维的制备方法,螯合机理以及其应用情况,并对今后聚丙烯腈基螯合纤维的发展进行了展望。认为开发具有消臭、抗菌等多功能纤维,制备纳米金属/聚丙烯腈基复合纤维,将会被更多关注,前景乐观。  相似文献   

8.
优先透水渗透汽化膜的研究   总被引:1,自引:0,他引:1  
王保国  陈灏 《水处理技术》1994,20(4):201-204
本文将聚乙烯醇和壳聚糖混合物涂到聚丙烯腈中空纤维内表面制备用于渗透汽化过程的中空纤维复合膜,研究不同的聚乙烯醇和壳聚糖共混组成对膜分离性能的影响,通过适当交联,使膜性能稳定,用于渗透汽化过程分离乙醇-水混合液时,进料乙醇浓度0.95,温度48℃,膜分离因子100~200,渗透通量40~70g/m^2.h。  相似文献   

9.
中空纤维膜的开发与应用进展   总被引:1,自引:0,他引:1  
中空纤维膜作为一种特种纤维,近年来发展迅猛,已应用到各个领域。作者综述了中空纤维膜的开发与应用现状,包括中空纤维膜的发展历史、制备方法、改性方法及应用等几个方面,最后展望了中空纤维膜制备技术和应用领域的发展趋势。  相似文献   

10.
专利产品     
一种氧化铝基陶瓷中空纤维膜制备方法 本发明涉及一种增强型氧化铝基陶瓷中空纤维膜的制备方法。将主体膜材料氧化铝粉料和增强剂进行球磨混合,之后干燥研磨过筛。配制聚合物溶液,把混合均匀的陶瓷粉料加入其中并分散均匀,得到适宜粘度的纺丝液。纺丝液脱泡处理后由喷丝头挤出,经过一定干纺程进入外凝固浴,此期间发生相分离过程,同时形成中...  相似文献   

11.
In this work, polyacrylonitrile (PAN) hollow fibers are pretreated with ammonium dibasic phosphate and then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The adsorption properties of the resultant activated carbon hollow fibers (ACHF) prepared in different conditions were studied. The results show that the adsorption properties of ACHF change regularly with preparing conditions of ACHF. The different adsorption ratios to three adsorbates reflect the number of micropores and mesopores in PAN‐based ACHF. Pretreatment with phosphate can increase the number of mesopores. Proper oxidation temperature and time can increase the number of micropores and mesopores. When carbonization temperature is more than 900°C and carbonization time ranges from 50 to 90 min, the number of micropores and mesopores, especially mesopores, greatly increases. Compared with other treatments, activation treatment greatly increases the number of micropores and mesopores, and the dominant pore sizes of mesopores in PAN‐based ACHF are from 2 to 10 nm. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 602–607, 2004  相似文献   

12.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate, then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of activation temperature of a precursor fiber on the microstructure, specific surface, pore‐size distribution, and adsorption properties of PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. After the activation process, the BET surface area of the PAN‐ACHF and surface area of mesopores in the PAN‐ACHF increased very remarkably and reached 1422 m2 g?1 and 1234 m2 g?1, respectively, when activation temperature is 1000°C. The adsorptions to creatinine and VB12 of PAN‐ACHF were much high and reached 99 and 84% respectively. In PAN‐ACHF which went through the activation at 700°C and 800°C, the micropore filling mainly occurred at low relative pressures, multimolecular layer adsorption occurred with the increasing of relative pressure, and the filling and emptying of the mesopores by capillary condensation occurred at high relative pressures. But in PAN‐ACHF which went through the activation at 900°C, a mass of mesopores resulted in the large pore filling by capillary condensation. The dominant pore sizes of mesopores in PAN‐ACHF are from 2 nm to 5 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3778–3783, 2006  相似文献   

13.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate, oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of the oxidation temperature of the PAN hollow fiber precursor on the microstructure, specific surface, pore size distribution, and adsorption properties of PAN‐based activated carbon hollow fiber (PAN‐ACHF) were studied. When PAN hollow fibers were oxidized at 270°C, because of drastic oxidation, chain scission occurred, and the number of pores within and on the surface of the resultant PAN‐ACHF increased, but the pores were just in the thinner region of the skin of PAN‐ACHF. The surface area of PAN‐ACHF reached a maximum when the oxidation temperature was 270°C. The adsorption ratios to creatinine were all higher than 90% at all oxidation temperatures, and the adsorption ratio to VB12 reached a maximum (97%) at 230°C. The dominant pore sizes of the mesopores in PAN‐ACHF ranged from 2 to 5 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 203–207, 2005  相似文献   

14.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate and then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of carbonization temperature of PAN hollow fiber precursor on the microstructure, specific surface, pore‐size distribution, and adsorption properties of PAN‐based carbon hollow fiber (PAN‐CHF) and PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. After the activation process, the surface area of the PAN‐ACHF increased very remarkably, reaching 900 m2 g?1 when carbonization is 1000°C, and the adsorption ratios to creatinine and VB12 of ACHF were much higher than those of CHF, especially to VB12. The different adsorption ratios to two adsorbates including creatinine and VB12 reflect the number of micropores and mesopores in PAN‐ACHF. The dominant pore sizes of mesopores in PAN‐ACHF are from 2 to 5 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2155–2160, 2005  相似文献   

15.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate, then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of activation time of a precursor fiber on the microstructure, specific surface area, pore‐size distribution, and adsorption properties of PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. The BET surface area of PAN‐ACHF and surface area of mesopores gradually increase with activation time extending, and reach the maximum values, 780 and 180 m2 g?1, respectively, when fibers are activated at 800°C for 100 min. The adsorption ratio to creatinine changes little with activation time extending and all values over all activation time are above 90%. The adsorption ratio to VB12 gradually increases with activation time extending before 60 min, and then becomes relatively constant from 60 to 100 min. The number of pores on the surface of PAN‐ACHF increases with activation time extending. The amount of mesopores in PAN‐ACHF made of fibers activated for different time increases with activation time extending and the dominant pore sizes of mesopores in PAN‐ACHF range from 2 to 5 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2565–2569, 2006  相似文献   

16.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate, then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of oxidation time of PAN hollow fiber precursor on the microstructure, specific surface, pore size distribution, and adsorption properties of PAN‐based activated carbon hollow fiber (PAN‐ACHF) were studied in this work. Both of specific surface area and adsorption ratio to VB12 reach maximums when PAN hollow fibers are oxidized for 5 h in air. The adsorption ratios for creatinine are all higher than 90% over all oxidation time. After 5 h of oxidation, the number of pores on the surface obviously increases, and the pore size is uniform. After 7 h of oxidation, the number of macropores in PAN‐ACHF increases. The dominant pore sizes of mesopores in PAN‐ACHF range from 2 to 5 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
Three types of precursors of polyacrylonitrile (PAN) hollow fibers were used to produce activated carbon hollow fibers (ACHF). These precursors are different in the structure and composition. Characterization were performed including tensile strength, modulus, x-ray diffraction, pore size distribution, and surface area measurement for the resulting ACHF. The results show that the ACHF produced from the precursor with larger crystal size and dense structure has higher mechanical properties, whereas the ACHF from the precursor with smaller crystal size and porous structure has larger surface area and broader pore size distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate aqueous solution, then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of pretreatment time of PAN hollow fibers in ammonium dibasic phosphate aqueous solution on the microstructure, specific surface, pore‐size distribution, and adsorption properties of PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. After the activation process, the Brunaner–Emmett–Teller (BET) surface area of the PAN‐ACHF and surface area of mesopores in the PAN‐ACHF increases and reaches 513 m2 g?1 and 66 m2 g?1 respectively, when the dipping time of PAN hollow fibers in ammonium dibasic phosphate aqueous solution is 30 min. The adsorptions to creatinine and VB12 of PAN‐ACHF are much high, reach 95% and 86% respectively, when dipping time is 30 min. The dominant pore sizes of mesopores in PAN‐ACHF range from 2 nm to 5 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2448–2453, 2006  相似文献   

19.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate aqueous solution, then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of pretreatment concentration of ammonium dibasic phosphate aqueous solution on the microstructure, specific surface, pore size distribution, and adsorption properties of PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. After the activation process, the Brunaner‐Emmett‐Teller (BET) surface area of the PAN‐ACHF and surface area of mesopores in the PAN‐ACHF increases and reaches 513 m2g?1 and 66 m2g?1 respectively when the concentration of ammonium dibasic phosphate aqueous solution is 4% (wt %). The adsorptions to creatinine are much high, reach more than 90% over all the concentration of ammonium dibasic phosphate aqueous solution. The adsorptions to VB12 of PAN‐ACHF reach 86% when the concentration of ammonium dibasic phosphate aqueous solution is 4% (wt %). The dominant pore sizes of mesopores in PAN‐ACHF range from 2 to 5 nm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Polyacrylonitrile (PAN) hollow fibers were pretreated with five different compounds containing phosphorus, including ammonium dibasic phosphate, ammonium dihydrogen phosphate, triammonium phosphate, phosphoric acid, and metaphosphoric acid, and then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of different compounds containing phosphorus as pretreating agents on the properties and structure of the resultant oxidized hollow fibers, carbon hollow fibers, and activated carbon hollow fibers are discussed. Comparing the Brunaner‐Emmett‐Teller (BET) surface area of PAN‐activated carbon hollow fibers (ACHF) pretreated with five different compounds, ammonium dibasic phosphate > triammonium phosphate > ammonium dihydrogen phosphate > phosphoric acid > metaphosphoric acid, and the surface area of mesopores in PAN‐ACHF pretreated with ammonium dibasic phosphate reaches maximum, 174 m2 g?1. The adsorption ratio to mesomolecule adsorbate, VB12, of PAN‐ACHF pretreated with ammonium dibasic phosphate also reaches maximum, 97.7 wt %. Moreover, the dominant pore sizes of PAN‐ACHF range from 2 to 5 nm in diameter. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 294–300, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号