首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bromine gas was evaluated for converting elemental mercury (Hg0) to oxidized mercury, a form that can readily be captured by the existing air pollution control device. The gas-phase oxidation rates of Hg0 by Br2 decreased with increasing temperatures. SO2, CO, HCl, and H2O had insignificant effect, while NO exhibited a reverse course of effect on the Hg0 oxidation: promotion at low NO concentrations and inhibition at high NO concentrations. A reaction mechanism involving the formation of van der Waals clusters is proposed to accountfor NO's reverse effect. The apparent gas-phase oxidation rate constant, obtained under conditions simulating a flue gas without flyash, was 3.61 x 10(-17) cm3 x molecule(-1) x s(-1) at 410 K corresponding to a 50% Hg0 oxidation using 52 ppm Br2 in a reaction time of 15 s. Flyash in flue gas significantly promoted the oxidation of Hg0 by Br2, and the unburned carbon component played a major role in the promotion primarily through the rapid adsorption of Br2 which effectively removed Hg0 from the gas phase. At a typical flue gas temperature, SO2 slightly inhibited the flyash-induced Hg0 removal. Conversely, NO slightly promoted the flyash induced Hg0 removal by Br2. Norit Darco-Hg-LH and Darco-Hg powder activated carbons, which have been demonstrated in field tests, were inferred for estimating the flyash induced Hg0 oxidation by Br2. Approximately 60% of Hg0 is estimated to be oxidized with the addition of 0.4 ppm of gaseous Br2 into full scale power plant flue gas.  相似文献   

2.
Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.  相似文献   

3.
Experimental data from a laboratory-scale wet scrubber simulator confirmed that oxidized mercury, Hg2+, can be reduced by aqueous S(IV) (sulfite and/or bisulfite) species and results in elemental mercury (HgO) emissions under typical wet FGD scrubber conditions. The S(IV)-induced Hg2+ reduction and Hg0 emission mechanism can be described by a model which assumes that only a fraction of the Hg2+ can be reduced, and the rate-controlling step of the overall process is a first-order reaction involving the Hg-S(IV) complexes. Experimental data and model simulations predict that the Hg2+ in the flue gas can cause rapid increase of Hg0 concentration in the flue gas across a FGD scrubber. Forced oxidation can enhance Hg2+ reduction and Hg0 emission by decreasing the S(IV) concentration in the scrubbing liquor. The model predictions also indicate that flue gas Hg0 increase across a wet FGD scrubber can be reduced by decreasing the pH, increasing S(IV) concentration, and lowering the temperature.  相似文献   

4.
In order to overcome the shortcomings of the traditional catalytic oxidation (TCO) mode for the conversion of the trace level of elemental mercury (Hg(0)) in flue gas, we put forward a novel and unique assembly that integrated membrane delivery with catalytic oxidation systems (MDCOs), which combined the controlled delivery of oxidants with the catalytic oxidation of Hg(0). The results show that the demanded HCl for Hg(0) conversion in the MDCOs was less than 5% of that in the TCO mode, and over 90% of Hg(0) removal efficiency can be obtained in the MDCOs with less than 0.5 mg m(-3) of HCl escaped. Meanwhile, the inhibition of SO(2) to Hg(0) catalytic conversion in the MDCOs was also less significant than in the TCO. The MDCOs have high retainability for HCl, which is quite favorable to Hg(0) conversion and HCl utilization. The reaction mechanism on mercury conversion in the MDCOs is discussed. The MDCOs appear to be a promising method for emission control of elemental mercury.  相似文献   

5.
Gas-phase reactions between elemental mercury and chlorine are a possible pathway to producing oxidized mercury species such as mercuric chloride in combustion systems. This study examines the effect of the chemistry of a commonly used sample conditioning system on apparent and actual levels of mercury oxidation in a methane-fired, 0.3 kW, quartz-lined reactor in which gas composition (HCl, Cl2, NOx, SO2) and quench rate were varied. The sample conditioning system included two impingers in parallel: one containing an aqueous solution of KCl to trap HgCl2, and one containing an aqueous solution of SnCl2 to reduce HgCl2 to elemental mercury (Hg0). Gas-phase concentrations of Cl2 as low as 1.5 ppmv were sufficient to oxidize a significant fraction of the elemental mercury in the KCl impinger via the hypochlorite ion. Furthermore, these low, but interfering levels of Cl2 appeared to persist in flue gases from several doped rapidly mixed flames with varied post flame temperature quench rates. The addition of 0.5 wt% sodium thiosulfate to the KCl solution completely prevented the oxidation from occurring in the impinger. The addition of thiosulfate did not inhibit the KCl impinger's ability to capture HgCl2. The effectiveness of the thiosulfate was unchanged by NO or SO2. These results bring into question laboratory scale experimental data on mercury oxidation where wet chemistry was used to partition metallic and oxidized mercury without the presence of sufficient levels of SO2.  相似文献   

6.
A bench-scale entrained-flow reactor was used to extract flue gas produced by burning a subbituminous Belle Ayr coal in a 580-MJ/h combustion system. The reactor was operated at 400 degrees, 275 degrees, and 150 degrees C with a flow rate corresponding to residence times of 0-7 s. Transformations of elemental mercury (Hg0) and total gas mercury (Hg(gas)) in the reactor were evaluated as functions of temperature and residence time. The most significant mercury transformations (Hg0 to Hg(p) and Hg0 to Hg2+) occurred at 150 degrees C, while virtually no obvious mercury transformations were observed at 275 degrees and 400 degrees C. Approximately 30% of total mercury has been oxidized at temperatures higher than 400 degrees C. A mass transfer-capacity limit model was developed to quantify in-flight mercury sorption on fly ash in flue gas at different temperatures. A more sophisticated model was developed to demonstrate not only the temperature and residence time effects but also to consider the effective surface area of fly ash and dependence of mercury vapor concentration on mercury transformations in flue gas. The reaction orders were 0.02 and 0.55 for Hg0 and Hg(gas), respectively. Only a few percent of the total surface area of the fly ash, in the range of 1%-3%, can effectively adsorb mercury vapor.  相似文献   

7.
Survey of catalysts for oxidation of mercury in flue gas   总被引:8,自引:0,他引:8  
Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg0) to oxidized mercury (Hg2+), followed by wet flue gas desulfurization (FGD). FGD cannot remove Hg0, but easily removes Hg2+ because of its solubility in water. To date, research has focused on three broad catalyst areas: selective catalytic reduction catalysts, carbon-based materials, and metals and metal oxides. We review published results for each type of catalyst and also present a discussion on the possible reaction mechanisms in each case. One of the major sources of uncertainty in understanding catalytic mercury oxidation is a lack of knowledge of the reaction mechanisms and kinetics. Thus, we propose that future research in this area should focus on two major aspects: determining the reaction mechanism and kinetics and searching for more cost-effective catalyst and support materials.  相似文献   

8.
Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g., incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury(Hg(p)) and divalent reactive gas-phase mercury (RGM). RGM species (e.g., HgCl2, HgBr2) are water-soluble and have much shorter residence times in the atmosphere than Hg0 due to their higher removal rates through wet and dry deposition mechanisms. Manual and automated annular denuder methodologies, to provide high-resolution (1-2 h) ambient RGM measurements, were developed and evaluated. Following collection of RGM onto KCl-coated quartz annular denuders, RGM was thermally decomposed and quantified as Hg0. Laboratory and field evaluations of the denuders found the RGM collection efficiency to be >94% and mean collocated precision to be <15%. Method detection limits for sampling durations ranging from 1 to 12 h were 6.2-0.5 pg m(-3), respectively. As part of this research, the authors observed that methods to measure Hg(p) had a significant positive artifact when RGM coexists with Hg(p). This artifact was eliminated if a KCl-coated annular denuder preceded the filter. This new atmospheric mercury speciation methodology has dramatically enhanced our ability to investigate the mechanisms of transformation and deposition of mercury in the atmosphere.  相似文献   

9.
Catalytic conversion of elemental mercury (Hg(0)) to its oxidized form has been considered as an effective way to enhance mercury removal from coal-fired power plants. In order to make good use of the existing selective catalytic reduction of NO(x) (SCR) catalysts as a cobenefit of Hg(0) conversion at lower level HCl in flue gas, various catalysts supported on titanium dioxide (TiO(2)) and commercial SCR catalysts were investigated at various cases. Among the tested catalysts, ruthenium oxides (RuO(2)) not only showed rather high catalytic activity on Hg(0) oxidation by itself, but also appeared to be well cooperative with the commercial SCR catalyst for Hg(0) conversion. In addition, the modified SCR catalyst with RuO(2) displayed an excellent tolerance to SO(2) and ammonia without any distinct negative effects on NO(x) reduction and SO(2) conversion. The demanded HCl concentration for Hg(0) oxidation can be reduced dramatically, and Hg(0) oxidation efficiency over RuO(2) doped SCR catalyst was over 90% even at about 5 ppm HCl in the simulated gases. Ru modified SCR catalyst shows a promising prospect for the cobenefit of mercury emission control.  相似文献   

10.
SiO2/V2O5/TiO2 catalysts were synthesized for removing elemental mercury (Hg0) from simulated coal-combustion flue gas. Experiments were carried out in fixed-bed reactors using both pellet and powder catalysts. In contrast to the SiO2-TiO2 composites developed in previous studies, the V2O5 based catalysts do not need ultraviolet light activation and have higher Hg0 oxidation efficiencies. For Hg0 removal by SiO2-V2O5 catalysts, the optimal V2O5 loading was found between 5 and 8%, which may correspond to a maximum coverage of polymeric vanadates on the catalyst surface. Hg0 oxidation follows an Eley-Rideal mechanism where HCI, NO, and NO2 are first adsorbed on the V2O5 active sites and then react with gas-phase Hg0. HCI, NO, and NO2 promote Hg oxidation, while SO2 has an insignificant effect and water vapor inhibits Hgo oxidation. The SiO2-TiO2-V2O5 catalysts exhibit greater Hg0 oxidation efficiencies than SiO2-V2O5, may be because the V-O-Ti bonds are more active than the V-O-Si bonds. This superior oxidation capability is advantageous to power plants equipped with wet-scrubbers where oxidized Hg can be easily captured. The findings in this work revealed the importance of optimizing the composition and microstructures of SCR (selective catalytic reduction) catalysts for Hg0 oxidation in coal-combustion flue gas.  相似文献   

11.
The efficacy of copper shavings (Cu(0)) for the removal of Hg2+ from aqueous solution by amalgamation is demonstrated. Two kinds of copper shavings were investigated: (a) chemically processed shavings (Fluka) and (b) recycled shavings from scrap metal. Batch sorption experiments yielded very high retardation coefficients of 28 850-82 830 for the concentration range studied (1-10 000 microg/L Hg2+ dissolved in distilled water or in a 0.01 M CaCl2 matrix solution). Sorption data were well-described bythe Freundlich isotherm equation. Kinetic batch sorption experiments showed that 96-98% of Hg2+ was removed within 2 h. Column experiments were performed with a mercury solution containing 1000 microg/L Hg in a 0.01 M CaCl2 matrix with a flow rate of 0.5 m/d. No mercury breakthrough (c/c(0) = 0.5) could be detected after more than 2300 percolated pore volumes, and the high retardation coefficients determined in the batch studies could be confirmed. Copper was released from the shavings due to the amalgamation process and to copper corrosion by oxygen, resulting in concentrations of mobilized copper of 0.2-0.6 mg/L. Due to their high efficiency in removing Hg2+ from aqueous solution, the use of copper shavings for the removal of mercury from contaminated water is suggested, employing a sequential system of mercury amalgamation followed by the removal of mobilized copper by an ion exchanger such as zeolites. Possible applications could be in environmental technologies such as wastewater treatment or permeable reactive barriers for in situ groundwater remediation.  相似文献   

12.
This research was initiated to characterize atmospheric deposition of reactive gaseous mercury (RGM), particulate mercury (HgP; <2.5 microm), and gaseous elemental mercury (Hg0) in the arid lands of south central New Mexico. Two methods were field-tested to estimate dry deposition of three mercury species. A manual speciation sampling train consisting of a KCl-coated denuder, 2.5 microm quartz fiber filters, and gold-coated quartz traps and an ion-exchange membrane (as a passive surrogate surface) were deployed concurrently over 24-h intervals for an entire year. The mean 24-h atmospheric concentration for RGM was 6.8 pg m(-3) with an estimated deposition of 0.10 ng m(-2) h(-1). The estimated deposition of mercury to the passive surrogate surface was much greater (4.0 ng m(-2) h(-1)) but demonstrated a diurnal pattern with elevated deposition from late afternoon to late evening (1400-2200; 8.0 ng m(-2) h(-1)) and lowest deposition during the night just prior to sunrise (2200-0600; 1.7 ng m(-2) h(-1)). The mean 24-h atmospheric concentrations for HgP and Hg0 were 1.52 pg m(-3) and 1.59 ng m(-3), respectively. Diurnal patterns were observed for RGM with atmospheric levels lowest during the night prior to sunrise (3.8 pg m(-3)) and greater during the afternoon and early evening (8.9 pg m(-3)). Discernible diurnal patterns were not observed for either HgP or Hg0. The total dry deposition of Hg was 5.9 microg m-2 year-' with the contribution from the three species as follows: RGM (0.88 microg m(-2) year(-1)), HgP (0.025 microg m(-2) year(-1)), and Hg0 (5.0 microg m(-2) year(-1)). The annual wet deposition for total mercury throughout the same collection duration was 4.2 microg m(-2) year (-1), resulting in an estimated total deposition of 10.1 microg m(-2) year(-1) for Hg. On one sampling date, enhanced HgP (12 pg m(-3)) was observed due to emissions from a wildfire approximately 250 km to the east.  相似文献   

13.
A prototype mercury (Hg) analyzer based on atomic absorption (AA) with a broadband background correction system using a deuterium (D2) lamp was developed and tested in the laboratory. Initial tests were performed using a small commercially available AA Hg detector operated in series with an optical breadboard version of the D2 background correction system. Based on encouraging results obtained with that system while using streams of elemental Hg and SO2 (an interfering gas), a compact prototype Hg analyzer for use in a Hg continuous emission monitor (CEM) was built. In laboratorytests performed in the absence of interfering gases, the analyzer could detect 0.5 microg/m3 or less of elemental Hg. The noise in the D2 channel of the analyzer was a limiting factor with respect to instrument sensitivity when background-corrected absorbance values were used. Tests with gas streams containing 9-26 microg/m3 of elemental Hg and 0.02-0.44% SO2 indicated that the D2 background correction approach did a good job at subtracting the large interfering signal due to SO2. However, a correction factor had to be applied to the absorbance readings from the D2 channel of the analyzer in order to obtain acceptable accuracy for the background-subtracted Hg measurements.  相似文献   

14.
One pathway for release of mercury (Hg) from naturally enriched sites is emission to the atmosphere. Elemental Hg, when emitted, will enter the global atmospheric pool. In contrast, if reactive gaseous Hg or Hg2+ (as HgCl2, HgBr2, or HgOH2) is formed, it will most likely be deposited locally. This study focused on the measurement of elemental Hg flux and reactive gaseous Hg concentrations at the Sulphur Bank Superfund Site, an area of natural Hg enrichment with anthropogenic disturbance and ongoing geothermal activity. Mean Hg emissions ranged from 14 to 11000 ng m(-2) h(-1), with the highest emissions from anthropogenically disturbed materials. Reactive gaseous Hg concentrations were the highest ever reported for a natural setting (0.3-76 ng m(-3)). Measured Hg fluxes were used within a Geographic Information System to estimate mercury releases to the atmosphere from the site. Results indicated approximately 17 kg of Hg y(-1) of is emitted to the atmosphere from the 3.8 km2 area, with half from mine waste, ore, and tailing piles and half from relatively undisturbed naturally enriched substrate.  相似文献   

15.
A novel nanocomposite that combines high-surface area silica with the photocatalytic properties of titania has been developed that allows for effective capture of elemental mercury vapor. The adsorption capability of the developed material has been found to improve after periods of photocatalytic oxidation. In this study, the mechanisms for adsorption enhancement were identified. BET nitrogen adsorption and mercury porosimetry were used to evaluate pore structure, and the results suggest that a decrease in contact angle was likely to be responsible for improved mercury capture over time. Contact angle measurements showed a significant change of more than 10 degrees, indicating greater attraction to mercury for the used pellets due to deposited mercuric oxide. ICP and TGA analyses showed that mercury was captured as both elemental mercury (Hg0) and mercuric oxide (HgO). In addition, it was shown that pellets used for nearly 500 h still showed greater than 90% removal efficiency and had an average capacity of 10 mg of Hg/g based on mass balance calculations, while some pellets had a capacity over 30 mg of Hg/g according to ICP and TGA analyses. Mercuric oxide doped pellets removed 100% of elemental mercury without pretreatment. The superior mercury removal efficiency combined with various advantages of the novel composite demonstrates its use as an effective alternative to conventional activated carbon injection technology.  相似文献   

16.
Modeling the past atmospheric deposition of mercury using natural archives   总被引:3,自引:0,他引:3  
Historical records of mercury (Hg) accumulation in lake sediments and peat bogs are often used to estimate human impacts on the biogeochemical cycling of mercury. On the basis of studies of lake sediments, modern atmospheric mercury deposition rates are estimated to have increased by a factor of 3-5 compared to background values: i.e., from about 3-3.5 microg Hg m(-2) yr(-1) to 10-20 microg Hg m(-2) yr(-1). However, recent studies of the historical mercury record in peat bogs suggest significantly higher increases (9-400 fold, median 40x), i.e., from about 0.6-1.7 microg Hg m(-2) yr(-1) to 8-184 microg Hg m(-2) yr(-1). We compared published data of background and modern mercury accumulation rates derived from globally distributed lake sediments and peat bogs and discuss reasons for the differences observed in absolute values and in the relative increase in the industrial age. Direct measurements of modern wet mercury deposition rates in remote areas are presently about 1-4 microg m(-2) yr(-1), but were possibly as high as 20 microg Hg m(-2) yr(-1) during the 1980s. These values are closer to the estimates of past deposition determined from lake sediments, which suggests that modern mercury accumulation rates derived from peat bogs tend to overestimate deposition. We suggest that smearing of 210Pb in the uppermost peat sections contributes to an underestimation of peat ages, which is the most important reason for the overestimation of mercury accumulation rates in many bogs. The lower background mercury accumulation rates in peat as compared to lake sediments we believe is the result of nonquantitative retention and loss of mercury during peat diagenesis. As many processes controlling time-resolved mercury accumulation in mires are still poorly understood, lake sediments appear to be the more reliable archive for estimating historical mercury accumulation rates.  相似文献   

17.
The springtime phenomenon, termed as the mercury depletion event (MDE), during which elemental gaseous mercury (Hg0) may be converted to a reactive form that accumulates in polar ecosystems, first noted in the Arctic, has now been observed at both poles and results in an important removal pathway for atmospheric mercury. An intensive international springtime mercury experiment was performed at Ny-Alesund, Spitsbergen, from 19 April to 13 May 2003 to study the atmospheric mercury chemistry in the Arctic environment and, in particular, the MDEs which occurred in the arctic boundary layer after polar sunrise. Automated ambient measurements of Hg0, divalent reactive gaseous mercury (RGM) and fine particulate mercury (<2.5 microm) (Hg(p)) were made at the Zeppelin Mountain Station (ZMS). During the experiment mercury concentrations in the lower atmosphere varied in synchrony with ozone levels throughout the Spring. Hg0 concentrations ranged from background levels (approximately 1.6 ng m(-3)) to undetectable values (<0.1 ng m(-3)) during the first and major MDE, while RGM data showed an opposite trend during the sampling period with concentrations increasing dramatically to a peak of 230 pg m(-3), synchronous with the depletion of Hg0. The results of a meteorological transport analysis indicate the MDEs observed at ZMS were primarily due to air masses being transported in from open water areas in the Arctic Ocean that were already depleted of Hg0 when they arrived and not due to in-situ oxidation mechanisms.  相似文献   

18.
Whole system elemental mercury (Hg0) flux was measured for approximately 1.5 years using two large gas exchange mesocosms containing approximately 100 two-year old aspen trees (Populus tremuloides) planted in soil with elevated mercury concentrations (12.3 microg/g). We hypothesized that during leafout, whole mesocosm Hg0 flux would increase due to movement of Hg0 in the transpiration stream from the soil to the air. This hypothesis was not supported; plants were found to assimilate Hg0 from the contaminated air, and whole system Hg0 emissions were reduced as plants leafed-out due to shading of the soil. Surface disturbance, watering, and increases in soil moisture, light, and temperature were all found to increase whole system Hg0 flux, with light being a more significant factor. Although surface soils were maintained at 15-20% moisture, daily watering caused pulses of Hg0 to be released from the soil throughout the experiment. Data developed in this experiment suggested that those processes acting on the soil surface are the primary influence on Hg emissions and that the presence of vegetation, which shields soil surfaces from incident light, reduces Hg emissions from enriched soils.  相似文献   

19.
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.  相似文献   

20.
Transgenic tobacco plants engineered with bacterial merA and merB genes via the chloroplast genome were investigated to study the uptake, translocation of different forms of mercury (Hg) from roots to shoots, and their volatilization. Untransformed plants, regardless of the form of Hg supplied, reached a saturation point at 200 microM of phenylmercuric acetate (PMA) or HgCl2, accumulating Hg concentrations up to 500 microg g(-1) with significant reduction in growth. In contrast, chloroplast transgenic lines continued to grow well with Hg concentrations in root tissues up to 2000 microg g(-1). Chloroplasttransgenic lines accumulated both the organic and inorganic Hg forms to levels surpassing the concentrations found in the soil. The organic-Hg form was absorbed and translocated more efficiently than the inorganic-Hg form in transgenic lines, whereas no such difference was observed in untransformed plants. Chloroplast-transgenic lines showed about 100-fold increase in the efficiency of Hg accumulation in shoots compared to untransformed plants. This is the first report of such high levels of Hg accumulation in green leaves or tissues. Transgenic plants attained a maximum rate of elemental-Hg volatilization in two days when supplied with PMA and in three days when supplied with inorganic-Hg, attaining complete volatilization within a week. The combined expression of merAB via the chloroplast genome enhanced conversion of Hg2+ into Hg,0 conferred tolerance by rapid volatilization and increased uptake of different forms of mercury, surpassing the concentrations found in the soil. These investigations provide novel insights for improvement of plant tolerance and detoxification of mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号