针对非均匀多采样率非线性系统辨识问题, 提出一种基于模糊模型的辨识方法. 首先, 分析了非线性系统在输入信号非均匀周期刷新, 输出信号周期采样的情况下, 非线性系统可以通过提升技术, 利用多个局部的线性模型加权组合来描述; 然后, 提出一个基于GK模糊聚类和递推最小二乘的模糊辨识算法; 最后, 针对化工pH 中和过程非线性系统, 采用非均匀采样数据建立其模糊模型, 以验证所提出方法的有效性.
相似文献针对闭环系统中时变状态空间模型和模态参数的辨识问题, 提出一种递推辨识格式, 将这种格式与递推子空间方法结合, 得到一种辨识方法. 该方法通过重建输入输出数据之间的关系, 递推辨识得到闭环系统的时变状态空间模型和模态参数. 算例研究了系统在模态参数突变和周期变化两种情况下的辨识问题, 仿真结果表明, 所提出算法能有效辨识线性时变反馈系统的状态空间模型和模态参数.
相似文献提出一种完全数据驱动的闭环子空间辨识及预测控制器设计方法. 该方法完全由闭环系统的输入输出数据辨识子空间矩阵, 通过子空间矩阵的拆分, 排除了与扰动相关的模型输入, 进而获取子空间矩阵参数的无偏估计; 将辨识得到的闭环系统子空间矩阵描述直接作为预测模型, 设计预测控制器; 将其应用于某钢铁集团焦炉炭化室压力控制系统, 取得了良好的控制效果.
相似文献针对一类非均匀数据采样Hammerstein-Wiener 系统, 提出一种递阶多新息随机梯度算法. 首先基于提升技术, 推导出系统的状态空间模型, 并考虑因果约束关系, 将该模型分解成两个子系统, 利用多新息遗忘随机梯度算法辨识出此模型的参数; 然后, 引入可变遗忘因子, 提出一种修正函数并在线确定其大小, 提高了算法的收敛速度及抗干扰能力. 仿真实例验证了所提出算法的有效性和优越性.
相似文献原始粒子群优化算法(PSO) 和各种改进方法存在着参数取值固定、收敛精度低等问题. 为此, 提出一种采用抽样策略的粒子群优化算法(SS-PSO). 通过拉丁超立方抽样(LHS) 策略更新粒子速度和位置, 以加快收敛速度; 提出一种基于随机采样的最优位置修正方法, 以微调全局最优; 提出“双抽样”LHS 局部搜索方法, 以提高收敛精度. 与其他新近提出的两个算法进行对比, 结果显示SS-PSO 在一定程度上提高了算法的性能.
相似文献针对传统Actor-critic (AC) 方法在求解连续空间序贯决策问题时收敛速度较慢、收敛质量不高的问题, 提出一种基于对称扰动采样的AC算法框架. 首先, 框架采用高斯分布作为策略分布, 在每一时间步对当前动作均值对称扰动, 从而生成两个动作与环境并行交互; 然后, 基于两者的最大时域差分(TD) 误差选取Agent 的行为动作, 并对值函数参数进行更新; 最后, 基于两者的平均常规梯度或增量自然梯度对策略参数进行更新. 理论分析和仿真结果表明, 所提框架具有较好的收敛性和计算效率.
相似文献采用非对称Lanczos 算法研究线性分数阶系统的模型降阶问题, 提出一种保持系统传递函数一定数量的分数阶矩的模型降阶方法. 根据Caputo 导数的运算法则给出线性分数阶系统的分数阶矩的计算方法; 利用非对称Lanczos 算法构造对应的非对称三对角矩阵; 根据非对称三对角矩阵的性质证明降阶系统与原系统具有相同的一定数量的分数阶矩; 给出降阶系统与原系统传递函数的误差估计, 为合理选择降阶系统的阶次提供理论依据. 数值实例的计算结果验证了所提出方法的有效性.
相似文献针对机理模型难以刻画的热轧精轧生产过程, 采用基于数据子空间的偏最小二乘方法建立热轧轧制力数据模型, 并构建轧制力优化模型, 利用改进的粒子群优化算法对优化模型计算求解. 结果表明, 使用数据驱动方法建立的轧制力数据模型能够揭示精轧过程轧制力的机理规律, 可以替代机理模型在实际系统中的应用. 通过对整体优化模型的求解, 可以提高热轧精轧产品的质量, 降低能源消耗, 表明基于数据驱动的建模和优化方法在实际生产中具有较大的应用价值.
相似文献电力系统供电不足时, 可以切除过量的负载以保证系统的稳定性. 针对飞机电力系统供电不足的情况, 提出一种最优负载切除方法. 该方法考虑了飞机上关键负载的优先供电要求, 将负载优先级权重因子引入负载方程中, 把负载切除问题转换为多目标优化问题. 通过求解该优化问题, 克服了负载切除的随机性和盲目性, 满足了关键负载的优先供电要求. 实验结果验证了所提出的负载切除方法的正确性和有效性.
相似文献