首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, FTIR spectra and ESEM images were employed to evaluate the effect of stearic acid surface modification of Mg(OH)2. As a result, the absorbing peak intensity of organic group on Mg(OH)2 increased with the coating amount of stearic acid increasing and there was no so‐called surface saturation as expected. The results indicated stearic acid surface treatment of Mg(OH)2 belonged to the acid–base reaction between stearic acid and Mg(OH)2, and it would not stop until Mg(OH)2 was reacted completely. In addition, stearic acid surface treatment of Mg(OH)2 had remarkable influence on the properties of ethylene vinyl acetate/Mg(OH)2 composites. With the increasing coating amount of stearic acid, the composites had decreased tensile strength, increased elongation at break, and deteriorated flame retardancy, compared with the composites filled with the uncoated Mg(OH)2. However, stearic acid surface treatment of Mg(OH)2 benefited processing ability of composites, and the composites had better processing ability as the coating amount of stearic acid increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Four kinds of magnesium hydroxide (Mg(OH)2) with different particle sizes are chosen and mixed with ethylene vinyl acetate copolymer (EVA) to investigate the effect of particle size on the flame retardancy of composites, which is evaluated by limiting oxygen index (LOI) testing, horizontal fire testing, and cone calorimeter. When Mg(OH)2 filling level changes from 35 to 70 wt %, the composites filled with nano‐Mg(OH)2 do not always possess the best flame retardancy, and among the composites filled with micro‐Mg(OH)2, the composites filled with 800 mesh Mg(OH)2 show the best flame retardancy; however, the composites filled with 1250 mesh presents the worst one. So the effect of particle size on the flame retardancy of micro‐Mg(OH)2‐filled EVA is not linear as expected. All the differences are thought to result from both particle size effect and distributive dispersion level of Mg(OH)2. To prepare the composites with better mechanical properties and flame retardancy, authors suggested that Mg(OH)2 of smaller size should be chosen as flame retardant, and good dispersion of Mg(OH)2 particles also should be assured. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4461–4469, 2006  相似文献   

3.
刘玲 《中国塑料》2005,19(6):91-93
采用线形低密度聚乙烯/乙烯-醋酸乙烯共聚物作为复合材料主体,表面处理过的氢氧化镁(Mg(OH)2)为主阻燃剂,以微胶囊化红磷和自制硅类阻燃剂为核心的复合阻燃剂为阻燃增效剂,重点探讨了Mg(OH)2和复合阻燃剂的阻燃效果。结果表明,Mg(OH)2与复合阻燃剂并用具有良好的协同效应,当Mg(OH)2用量40份,复合阻燃剂5~7份时,可获得较高的氧指数,垂直燃烧试验通过FV0级,且材料抗静电能力提高,力学性能、加工性能较好。  相似文献   

4.
Al(OH)3和Mg(OH)2阻燃EVA性能的研究   总被引:1,自引:0,他引:1  
选用形貌、粒径尺寸及分布相近的两种无机阻燃剂氢氧化铝(Al(OH)3)和氢氧化镁(Mg(OH)2),研究了二者用量对乙烯-醋酸乙烯酯共聚物(EVA)复合材料的力学性能和阻燃性能的影响,并比较了添加红磷的复合材料的力学性能和阻燃性能。研究表明:Al(OH)3和Mg(OH)2用量对复合材料性能影响比较相似,随着阻燃剂用量的增加,复合材料的阻燃性能提高,拉伸强度增加,但断裂伸长率下降;通过锥形量热仪数据看出:Al(OH),的点燃时间短,最大热释放速率和平均热释放速率低,火行为指数大,阻燃效果比Mg(OH)2好;红磷的加入对复合材料力学性能影响不大,而对阻燃性能影响较大。Mg(OH)2与红磷复配能提高复合材料的氧指数,但是,从水平和垂直燃烧角度考虑,Al(OH)3与红磷之间的阻燃协效效果更好。  相似文献   

5.
原位聚合改性氢氧化镁在EVA中的应用   总被引:1,自引:1,他引:1  
通过苯乙烯在氢氧化镁颗粒表面的原位聚合,由化学改性法提高了颗粒表面的憎水性和亲油性,DSC和熔体流动速率等测定结果表明:经化学改性提高了氢氧化镁样品的热分解温度,使其吸水性明显下降,在乙烯一醋酸乙烯酯共聚物(EVA)基体树脂中的分散性得到改善;SEM观察发现采用原位聚合改性后的氢氧化镁与EVA基体树脂的相容性明显优于未改性氢氧化镁。将其填充EVA,明显改善了材料的力学性能和加工性能,材料的断裂伸长率提高4倍以上。  相似文献   

6.
氢氧化镁阻燃剂填充EVA共聚物力学性能研究   总被引:2,自引:0,他引:2  
研究了普通氢氧化镁、六角片状氢氧化镁和硬脂酸(SA)改性氢氧化镁分别填充到乙烯-乙酸乙烯共聚物(EVA)中制得的复合材料的力学性能。用红外光谱(FT-IR)、扫描电镜(SEM)对3种类型氢氧化镁及EVA/氢氧化镁复合材料的结构和形貌进行了分析。结果表明:相比普通氢氧化镁,六角片状氢氧化镁和SA改性的氢氧化镁有效地降低了表面极性,大大降低了对复合材料的力学性能的影响;4%(质量分数)SA改性氢氧化镁在EVA树脂中的分散性均匀,填料表面与树脂表面的界面黏结性较好;氢氧化镁(MH)粉体的加入增加了EVA/MH复合材料的拉伸强度,其中4%(质量分数)SA改性氢氧化镁粉体对复合材料拉伸强度的影响最大,六角片状氢氧化镁影响最小;氢氧化镁粉体填充量达到60质量份(60质量份氢氧化镁填充至100质量份EVA中)时,断裂伸长率降低到100%以下,复合材料力学性能急剧恶化。  相似文献   

7.
制备了PP(聚丙烯)/Al(OH)_3/Mg(OH)_2/硼酸锌和PP/Al(OH)_3/Mg(OH)_2阻燃复合材料,并测定了复合材料的氧指数(OI)、水平燃烧速度和烟密度。结果表明,OI随着阻燃剂质量分数的增加而升高,随着粒径的增大而降低;燃烧速度随着阻燃剂用量的增加而下降,随着粒径的增大先升后降;烟密度随着阻燃剂用量的增加而降低,随着粒径的增大而增大;添加硼酸锌后具有显著的抑烟效果。  相似文献   

8.
Y.T. Sung  H.S. Lee  H.G. Yoon 《Polymer》2005,46(25):11844-11848
Effects of crosslinking and crystallinity on the properties of the thermal and rheological properties of the EVA were studied. From the studies of storage modulus of the EVA with VA content in the solid temperature range (about −70 to 50 °C), the storage modulus decreased with increasing the VA content. This result suggested that the crystallinity of the EVA affected the storage modulus of the EVA because of the weak crosslinking of the EVA by DCP. From the studies of complex viscosity of the EVA with and without DCP in the melt state, the values of the power law parameter of the EVA without DCP ranged from 0.39 to 0.50 and the EVA with DCP ranged from 0.03 to 0.12. In the measurement of the complex viscosity of the EVA in the melt state, the crosslinking affected the complex viscosity of the EVA with DCP.  相似文献   

9.
A novel phosphorus‐silicon‐containing flame retardant, spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride/9, 10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane (SPDV), was synthesized successfully and used for optimizing the flame retardancy of ethylene‐vinyl acetate copolymer (EVM) rubber/magnesium hydroxide (MDH) composites. The microstructure of SPDV was characterized and determined by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Thermogravimetric analysis (TGA) showed that SPDV had good charring effect in air even at high temperature (800°C). The flame retardancy of the optimized EVM/MDH composites by SPDV was investigated by limiting oxygen index (LOI), cone calorimeter, and UL‐94 vertical burning tests. A higher LOI value (29.4%) and better UL‐94 rating (V‐0) can be achieved for the optimized EVM/MDH composite (EVM‐7) than EVM/MDH composite without SPDV (EVM‐3) with the total loading of additives. The HRR decreased and residual mass increased gradually as the loading of SPDV increased for the optimized EVM/MDH composites. There existed distinct synergistic intumescent flame‐retardant effect between SPDV and MDH in EVM matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
This work reports the study of the addition of isopropanol on controlled release of ibuprofen from ethylene vinyl acetate (EVAc) copolymer membranes. An EVAc solution in cyclohexane (4% w/v) containing triethyl citrate (7% w/v) as plasticizer was mixed with ibuprofen at three different concentrations of 4, 6, and 8%. Isopropanol was mixed with each of the previous mixtures to form solutions of 1, 3, and 5% isopropanol concentrations. Samples were solvent cast on glass petri‐dishes to form membranes. Home‐made diffusion cells were used for in vitro study. These cells were composed of two compartments, donor (exposed to ambient conditions), and receptor (including buffer solution maintained at 37°C). Each cell was equipped with a sampling port and water in and out system. An ultraviolet spectrometer at 222 nm was used to measure release rates of obtained membranes. The diffusion mechanism for drug release was examined by zero‐order, first‐order, Higuchi and Korsmeyer‐Peppas theories to confirm the obtained membranes follow the matrix‐type system. By increasing the drug concentration from 4 to 8%, drug release (cumulative amount) was improved from 20 (47.5%) to 30 (36%) μg/cm2 after 24 h. Addition of 5% isopropanol to the above samples (4 and 8% loading) further increased drug release to 24 and 43 μg/cm2. Results were in good agreement with the Korsmeyer‐Peppas theory for samples with 4 (% w/w) of ibuprofen. The highest percentage of drug release after 24 h was 59% for the sample with 4% drug loading compared to 50% for the sample with 8% drug loading, both with 5% isopropanol. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The synthesized flame retardant 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane (DV) was used to modify multiwalled carbon nanotubes (MWNTs). The results of FTIR, 1H‐NMR, and TGA measurements show that DV has been covalently grafted onto the surfaces of MWNTs, and the MWNTs‐g‐DV is obtained successfully. Transmission electron microscopy images show that a core‐shell nanostructure appears with MWNTs as the core and the DV thin layers as the shell, and the modified MWNTs with DV can achieve better dispersion than unmodified MWNTs in EVM matrix. Thermogravimetric analysis and cone calorimeter tests indicate that the thermal stability and flame retardant are improved for the presence of the MWNTs in EVM matrix. Moreover, the improvement is more evident for EVM/MWNTs‐g‐DV composite compared to unmodified MWNTs‐based composite, which can be attributed to the better dispersion of the DV‐modified MWNTs and to the chemical structure of the combustion residue. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The aim of this investigation is to evaluate the effect of hot air aging on properties of ethylene‐vinyl acetate copolymer (EVA, 14 wt % vinyl acetate units), ethylene‐acrylic acid copolymer (EAA, 8 wt % acrylic acid units), and their blends. Attenuated total reflection‐Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and mechanical tests are employed to investigate the changes of copolymer blends' structures and properties. Increase of carbonyl index derived from ATR measurements with aging time suggests the incorporation of oxygen into the polymeric chain. By DSC measurements, the enthalpy at low temperature endothermic peak (Tm2) of EAA becomes less and disappears after 8 weeks aging, but enthalpy at Tm2 of EVA is not influenced by the hot air aging and remains stable despite of the aging time. For various proportions of EAA and EVA blends, enthalpy at Tm2 decreases as the EAA proportion increases when aging time is 8 weeks; after several weeks of hot air aging, the various blends appear a same new peak just over the aging temperature 70°C which is due to the completion of crystals which are not of thermodynamic equilibrium state. Mechanical tests show that increase of crystallinity and hot air aging deterioration both have influence on the hardness, tensile strength, and elongation at break. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
乙烯—醋酸乙烯酯共聚物的化学接枝改性   总被引:4,自引:0,他引:4  
尹骏  张军 《中国塑料》2001,15(5):23-29
综述了乙烯-醋酸乙烯酯共聚物的化学接枝方法,重点探讨了乙烯-醋酸乙烯酯与马来酸酐的接枝原因,并对接枝物的表征及应用加以论述。  相似文献   

14.
15.
Two commercial polymer materials, metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) have been used to form binary blends of various compositions. The mechanical properties, morphology, rheological behavior, dynamic mechanical properties, and crystallization of m‐LLDPE/EVA blends were investigated. It was found that with the addition of EVA, the fluidity and processability of m‐LLDPE were significantly improved, and the introduction of polar groups in this system showed no significant changes in mechanical properties at lower EVA content. As verified by morphology observation and differential scanning calorimetry analysis, miscible blends were formed within certain weight ratios. Dynamic mechanical property studies showed that flexibility of the blends was enhanced in comparion with pure m‐LLDPE, where the peak value of loss modulus shifted to lower temperature and its intensity was enhanced as EVA content increased, indicating the existence of more amorphous regions in the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 905–910, 2004  相似文献   

16.
Ethylene vinyl acetate copolymer (EVA) and monmorillonite (MMT) nanocomposites have been investigated as a function of vinyl acetate content and molecular weight of EVA and types of substituted alkyl ammonium of MMT. It is found that vinyl acetate content and type of substituted alkyl ammonium are important factors for the intercalation behaviour of MMT in MMT/EVA nanocomposite. Maleic anhydride grafted high‐density polyethylene was used as a compatibilizer to improve the intercalation behaviour of MMT. X‐ray diffraction and transmission electron microscopy were used to characterize the intercalation/exfoliation behaviour, and mechanical properties were measured. © 2003 Society of Chemical Industry  相似文献   

17.
EVA/LLDPE/Mg(OH)_2/纳米蒙脱土复合材料的研究   总被引:2,自引:0,他引:2  
合成了有机改性蒙脱土(MMT),用线型低密度聚乙烯、乙烯-醋酸乙烯共聚物作为无卤电缆材料主体,将LLDPE和EVA分别与改性MMT,Mg(OH)2主阻燃剂共混制成纳米复合材料,发现改性MMT与阻燃剂之间有力学和阻燃协效作用,能同时提高塑料的力学和阻燃性能。  相似文献   

18.
Dispersion behavior of monmorillonite (MMT) is investigated in ethylene vinyl acetate (EVA)/MMT nanocomposite with various vinyl acetate content. Maleic anhydride (MAH) grafted polyethylenes with various MAH contents are used as a compatibilizer to enhance the dispersion of MMT. DMA and XRD studies indicate that an intercalated/exfoliated structure is obtained and vinyl acetate content and the concentration of PEMA play a critical role in EVA/MMT nanocomposite. Higher vinyl acetate content and concentration of grafted maleic anhydride result in better dispersion of MMT. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1057–1061, 2004  相似文献   

19.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

20.
The halogen‐free flame retardant (HFFR) ethylene‐vinyl acetate copolymer (EVM)/ATH/SiO2 composites have been prepared by melting compounding method, and the flame retardant, thermal stability, rheological, electrical, and mechanical properties have been investigated by cone calorimeter, LOI, UL‐94, TG, FE‐SEM, rotational rheometer, dielectric breakdown, and ultimate tensile. The results indicate that the flame retardant of EVM vulcanizates is improved and the fire jeopardizing is dramatically reduced due to the addition of ATH. It is necessary that sufficient loading of ATH (≥120 phr) is needed to reach essential level (LOI > 30; V‐0 rating) of flame retardant for HFFR EVM/ATH/SiO2 composites used as cable in industry. The rheological characteristics show that at all the measurement frequencies, the storage and loss modulus of the composites increase monotonously as the concentration of ATH filler increases, while the complex viscosity and tan delta present reverse trend. And also, it has been found that the HFFR composites at high filler concentrations still keep good mechanical and electrical properties, which is very important for practical applications as cable. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号