首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of maleic anhydride modified ethylene–propylene–diene rubber (EPDMMA) and maleic anhydride modified ethylene–vinyl acetate (EVAMA) on the compatibilization of nitrile rubber (NBR)/ethylene–propylene–diene rubber (70:30 w/w) blends vulcanized with a sulfur system were investigated. The presence of EPDMMA and EVAMA resulted in improvements of the tensile properties, whereas no substantial change was detected in the degree of crosslinking. The blend systems were also analyzed with scanning electron microscopy and dynamic mechanical thermal analysis. The presence of EVAMA resulted in a blend with a more homogeneous morphology. The compatibilizing effect of this functional copolymer was also detected with dynamic mechanical analysis. A shift of the glass‐transition temperature of the NBR phase toward lower values was observed. The presence of EPDMMA and EVAMA also increased the thermal stability, as indicated by an improvement in the retention of the mechanical properties after aging in an air‐circulating oven. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2408–2414, 2003  相似文献   

2.
In this study, vulcanized thermoplastic elastomers were produced through the formation of crosslinks with peroxide for different ratios of ethylene–propylene–diene copolymer to polypropylene. Mixing was performed with a twin‐screw extruder. Afterward, the yield, tensile strength, elastic modulus, elongation, Izod impact strength, hardness, melt flow index, Vicat softening point, heat deflection temperature, and density of the crosslinks were determined. The thermal transition temperatures and microstructure were determined with differential scanning calorimetry and scanning electron microscopy, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3895–3902, 2007  相似文献   

3.
An ethylene–propylene–diene terpolymer (EPDM) was photocrosslinked under UV irradiation with benzil dimethyl ketal (BDK) as a photoinitiator and trimethylolpropane triacrylate (TMPTA) as a crosslinker. The efficiency of the photoinitiated crosslinking system EPDM–BDK–TMPTA, various factors affecting the crosslinking process (the photoinitiator and crosslinker and their concentrations, the irradiation time, the temperature, the atmosphere and UV‐light intensity, and the depth of the UV‐light penetration), and the mechanical properties of photocrosslinked EPDM were examined extensively through the determination of the gel contents, infrared spectra, and mechanical measurements. EPDM samples 3 mm thick were easily crosslinked with a gel content of about 90% after 30 s of UV irradiation under optimum conditions. The photoinitiating system of a suitable initiator combined with a multifunctional crosslinker such as BDK–TMPTA enhanced the efficiency of the photocrosslinking reaction, especially by increasing the initial rate of crosslinking. The gel content of photocrosslinked EPDM, which was determined by the content of diene in EPDM, the depth of the UV‐light penetration, and the light intensity, played a key role in increasing the mechanical properties of the photocrosslinked samples in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1837–1845, 2004  相似文献   

4.
Two kinds of polymer blends, polyacetals (POMs) and ethylene–propylene–diene terpolymer (EPDM), have been prepared by mechanical blending. The rubbery EPDM was added to the rigid POM matrix to increase toughness. The mechanical, physical, thermal, dynamic mechanical, and morphological properties of these samples have been measured. The notched Izod impact strength and the elongation of the blends reaches a maximum at 7.5 wt % EPDM content. Scanning electron micrographs (SEM) showed that the domain sizes of EPDM vary from 0.25 to 1.0 μm and were independent of the composition. The POM/EPDM blends were determined to be immiscible by SEM, but showed single Tg behavior as determined by differential scanning calorimetry (DSC) and dynamic mechanical analyses up to 7.5 wt % EPDM. Because of that, the Tg's of POM and EPDM were very similar in value. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The effect of ethylene–propylene–diene monomer rubber (EPDM) as an additive on the abrasion resistance of a thermoplastic polyurethane (TPU) resin was investigated. The mechanical properties and microstructure of the resultant TPU/EPDM composites were evaluated, and the surface morphology of the composites after abrasion testing was examined. The results showed that the addition of EPDM greatly improved both the mechanical properties and abrasion resistance of the TPU resin. A TPU/EPDM composite with 8 wt % EPDM demonstrated the highest tensile strength, the largest elongation at break, and the best overall performance. The abrasion of this composite was 27 mg, whereas that of the pure resin was 73 mg. With the further addition of EPDM, the abrasion resistance of the resultant composites decreased, whereas the viscosity increased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Viscosities were obtained on oil solutions of two ethylene–propylene–diene terpolymers (EPDMs) and their blends. For the amorphous terpolymer with 59 mol% ethylene, intrinsic viscosities were constant between–10 and 40°C. The viscosities decreased rapidly at low temperature for blends of this material with as little as 20 wt % of a slightly crystalline EPDM with 79 mol% ethylene. Dynamic viscosity measurements on 1.0% solutions of blends likewise gave considerably smaller values at low temperature than measurements on an amorphous EPDM of similar molecular weight. The data are in agreement with the view that longer ethylene sequences that crystallize in the bulk polymer can organize in oil into ordered domains that interfere less with flow than the disordered amorphous polymer regions. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Nanocomposite vulcanizates based on ethylene–propylene–diene monomer rubber (EPDM) and organically modified montmorillonite with improved mechanical and barrier properties were prepared via a melt‐mixing process in the presence of maleic anhydride grafted ethylene–propylene–diene monomer rubber (EPDM‐g‐MAH) as an interfacial compatibilizer. The effects of the EPDM Mooney viscosity as the matrix and also the compatibilizer molecular weight and its maleation degree on the developed microstructure were also studied. The annealing of the vulcanized nanocomposites based on a low‐Mooney‐viscosity EPDM matrix and low‐Mooney‐viscosity EPDM‐g‐MAH enhanced the flocculation of the dispersed clay platelets; this implied that the flocculated structure for the clay nanolayers was more thermodynamically preferred in these nanocomposites. This was verified by the decrease in the oxygen permeability of the nanocomposite vulcanizates with increasing annealing time. The tendency of the clay nanosilicate layers to flocculate within the matrix of EPDM was found to be influenced by the clay volume fraction, the maleation degree, and also, the Mooney viscosity of the compatibilizer. Interfacially compatibilized nanocomposites based on high‐molecular‐weight EPDM exhibited a more disordered dispersion of the clay nanolayers, with a broadened relaxation time spectra; this was attributed to the higher shearing subjected to the mix during the melt‐blending process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The miscibility of polymers is not only an important basis for selecting a proper blending method, but it is also one of the key factors in determining the morphology and properties of the blends. The miscibility between ethylene‐propylene‐diene terpolymer (EPDM) and polypropylene (PP) was explored by means of dynamic mechanical thermal analysis, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results showed that a decrease in the PP content and an increase of the crosslinking density of EPDM in the EPDM/PP blends caused the glass‐transition temperature peaks of EPDM to shift from a lower temperature to higher one, yet there was almost no variance in the glass‐transition temperature peaks of PP and the degree of crystallinity of PP decreased. It was observed that the blends prepared with different mixing equipment, such as a single‐screw extruder and an open mill, had different mechanical properties and blends prepared with the former had better mechanical properties than those prepared with the latter. The TEM micrographs revealed that the blends were composed of two phases: a bright, light PP phase and a dark EPDM phase. As the crosslinking degree of EPDM increased, the interface between the phases of EPDM and PP was less defined and the EPDM gradually dispersed in the PP phase became a continuous phase. The results indicated that EPDM and PP were both partially miscible. The mechanical properties of the blends had a lot to do with the blend morphology and the miscibility between the blend components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 315–322, 2002  相似文献   

9.
In this study, ethylene–propylene–diene terpolymer residues (EPDM‐r) from the automotive industry were analyzed by thermogravimetric analysis (TGA) for determination of the activation energy (Ea) of decomposition by the Flynn‐Wall‐Ozawa (FWO) method. The degradation mechanism was determined by the method of Criado et al. Analysis of the nonvulcanized EPDM gum (EPDM‐g) and paraffinic oil used in the composition of the compound was also carried out. The Ea values for the decomposition of the EPDM‐g and paraffinic oil remained constant with the conversion, but for the EPDM‐r decomposition, they changed due to the initial oil elimination followed by decomposition of the EPDM fraction. It was observed that removal of the paraffinic oil occurred less easily in the tridimensional vulcanized network, and there were differences in the elimination mechanism. The EPDM degradation mechanism was also affected by vulcanization and the fillers present in the compound. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
White rice husk ash (WRHA) and silica filled ethylene–propylene–diene terpolymer (EPDM) vulcanizates were prepared using a laboratory size two‐roll mill. Curing characteristics and physical properties of vulcanizates were studied with respect to the filler loading and filler type. Filler loading was varied from 0–50 parts per hundred resin (phr) at 10 phr intervals. Curing was carried out using a semi‐efficient vulcanization system in a Monsanto rheometer. Enhancement of the curing rate was observed with increasing WRHA loading, whereas the opposite trend was observed for silica‐filled vulcanizates. It was also indicated by the maximum torque and Mooney viscosity results that WRHA offers processing advantages over silica. Compared to the silica‐filled vulcanizates, the effect of filler loading on the physical properties of WRHA‐filled vulcanizates was not significant. According to these observations, WRHA could be used as a diluent filler for EPDM rubber, while silica can be used as a reinforcing filler. © 2001 Society of Chemical Industry  相似文献   

11.
Correlations among the degree of crosslinking of ethylene vinyl acetate copolymer (EVA), the grafting yield of maleic anhydride (MAH) onto EVA, and the mechanical properties of the blends of poly(butylene terephtalate) (PBT) with EVA‐g‐MAH were investigated. The EVA was functionalized by melt grafting reaction in the presence of MAH and dicumyl peroxide (DCP) using a plasticorder. The grafting yield of MAH was increased by increasing the concentration of MAH and DCP. The flexural strength of PBT–EVA‐g‐MAH blends depends on both the grafting yield of MAH and the degree of crosslinking of EVA, while the crosslinked parts of EVA‐g‐MAH hindered rather than improved the tensile strength regardless of the increase of the grafting yield of MAH. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1305–1310, 2003  相似文献   

12.
The objective of this work is to ascertain the characteristics of desirable (cure) and especially undesirable (scorch) crosslinking when carbon black filled ethylene propylene diene terpolymer (EPDM) is processed using different peroxide initiators. The mixing temperature and the nature of the peroxide initiator are crucial parameters affecting scorch (undesirably premature crosslinking) in this rubber. Processability and properties of EPDM prepared using various mixer set temperatures have been investigated. Dicumyl peroxide (Luperox DC), di(t‐butylperoxy) diisopropylbenzene (Luperox F), and 2,5‐dimethyl‐2,5‐di(t‐butylperoxy) hexane (Luperox 101) were used as crosslinking initiators. Higher mixing temperatures give shorter scorch times, greater scorch magnitudes, greater heterogeneities in crosslink spatial distribution and poorer tensile properties. However, extreme localization of the unwanted crosslinking at the rubber‐filler interface does have a beneficial effect. Luperox DC offers poorer processability and poorer resulting properties than do Luperox F and Luperox 101, due to its shorter half‐life and greater solubility in the rubber phase. This is the first time that the spatial heterogeneity of crosslinking and scorch has been related to the basic thermodynamics of 3‐component 2‐phase systems. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44523.  相似文献   

13.
The effects of ultrasonic irradiation on extrusion processing and mechanical properties of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) blends are examined. Results show that appropriate irradiation intensity can prominently decrease die pressure and apparent viscosity of the melt, increase output, as well as increase toughness of PP/EPDM blends without harming rigidity. In case the blends are extruded with ultrasonic irradiation twice, the impact strength of the blend rises sharply at 50–100 W ultrasonic intensity, and amounts to more than 900 J/m, 1.5 times as high as that of blend without ultrasonic irradiation. Scanning electron microscopy observation shows that with ultrasonic irradiation, morphology of uniform dispersed EPDM phase and good adhesion between EPDM and PP matrix was formed in PP/EPDM blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3519–3525, 2003  相似文献   

14.
Measurements were made of the relaxation of the stress of stretched polypropylene (PP) and ethylene–propylene–diene elastomer blend vulcanizates at various strain levels. It was found that PP-blended vulcanizates showed greater relaxation than that of the gum vulcanizate at all extensions. There was a continual increase in the relaxation rate with the 10% PP-blended vulcanizate but an initial sharp decrease and then a flattening tendency with the above 10% PP-blended vulcanizate at an increasing stain level. An interesting observation of the study was that the rate of stress relaxation decreased linearly in two steps in the case of blend vulcanizates above 10% PP at 100% and above strain levels. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2155–2162, 1998  相似文献   

15.
The performance of white rice husk ash (WRHA) as filler for polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic elastomer (TPE) composites was investigated. The composites with different filler loadings were prepared in a Brabender plasticorder internal mixer. Both unvulcanized and dynamically vulcanized composites were prepared. Mixing and vulcanization processes of the composites were monitored through the typical Brabender torque‐time curves. The mechanical properties and morphology of the composites were also studied. The Brabender torque curves revealed that the dynamic vulcanization process employed was successful and incorporation of filler has no adverse effect on the processibility of the composites. Incorporation of WRHA improves the tensile modulus and flexural modulus and lowers tensile strength, elongation at break, tear strength, and toughness of both types of composites. Dynamic vulcanization significantly enhances the mechanical and TPE properties of the composites. Dynamic mechanical analysis (DMA) study revealed the existence of two phases in both types of composites. It further shows that neither dynamic vulcanization nor filler agglomeration has played a prominent role in the compatibility of the composites. Thermogravimetric investigation shows that dynamic vulcanization or WRHA loading has not adversely affected the thermal stability of the composites. The scanning electron micrographs provide evidence for the tendency to form filler agglomerates with increasing filler loading, better filler dispersion of dynamically vulcanized composites over unvulcanized composites, and effective vulcanization of elastomer phase of the composites in the presence of filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 438–453, 2002  相似文献   

16.
The influence of the compounding route of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM)/nano‐CaCO3 composites on their properties, including their mechanical properties, the dispersion degree of nano‐CaCO3, and the morphology of EPDM, was studied. The results showed that the toughness of the composites and the morphology of the EPDM particles were markedly influenced by the compounding route, whereas the dispersion degree of nano‐CaCO3 in the matrix was little influenced by the compounding route. The impact strength of composites prepared by one route was about 60 kJ/m2 with 20 wt % nano‐CaCO3. The results indicated that a sandbag of nano‐CaCO3 embedded in EPDM could effectively improve the toughness of the composites. A sandbag composed of EPDM and nano‐CaCO3 eliminated the deterioration effect of the nano‐CaCO3 agglomerate on the toughness of the composites, whereas the nano‐CaCO3 agglomerate separately dispersed in PP decreased the toughness of the tercomponent composite © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

17.
Vulcanizates of blends of ethylene–propylene–diene rubber and polyamide copolymers were prepared by reactive compatibilization. A reactive route was employed for compatibilizing these blends with the addition of chlorinated polyethylene (CPE). The influence of the compatibilizers, crosslinking agents, blend compositions, and addition modes of the compatibilizers on the mechanical properties of the blends was investigated. The morphologies of the blends were determined with scanning electron microscopy. The addition of CPE was found to reduce the particle size of the dispersed phase remarkably. The stability of the blends with compatibilizers was measured by high‐temperature thermal aging. The mechanical properties were examined by stress–strain measurements and dynamic mechanical thermal measurements; the addition of polyamide copolymers caused significant improvements in the tensile properties of these blends.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1727–1736, 2003  相似文献   

18.
The positive temperature coefficient (PTC) effects of carbon black (CB)‐filled semicrystalline and amorphous ethylene–propylene–diene terpolymer (EPDM) composites were studied. The semicrystalline EPDM/CB composite exhibited a low PTC effect followed by a pronounced negative temperature coefficient (NTC) effect, while the amorphous EPDM/CB composite exhibited only an NTC effect. By the effect of γ‐ray irradiation, not only was the NTC effect of the composites eliminated, but also a high PTC effect appeared. The PTC intensity reached as high as six orders of magnitude even for an amorphous EPDM/CB composite and the PTC transition temperature decreased with the irradiation dose. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1571–1574, 2001  相似文献   

19.
The sorption and diffusion of halogenated hydrocarbon penetrants through different ethylene–propylene–diene terpolymer (EPDM) blends, such as EPDM/natural rubber, EPDM/bromobutyl rubber, and EPDM/styrene butadiene rubber (50/50 w/w), were studied. The diffusion coefficient of halogenated penetrants fell in the range 1.5–14.52 × 10?7 cm2/s in the temperature range of 25–60°C. Transport data were affected by the nature of the interacting solvent molecule rather than its size and also by the structural variations of the EPDM blends. 1,2‐Dichloroethane showed a lower mass uptake compared to other penetrants. The temperature dependence of the transport coefficient was used to estimate the activation parameters, such as the activation energy of diffusion (ED) and the activation energy of permeation (Ep) from Arrhenius plots. The activation parameters for ED of aliphatic chlorinated organic penetrants was in the range 7.27–15.58 kJ/mol. These values fell in the expected range for rubbery polymers, well above their glass‐transition temperature. Also, the thermodynamic parameters, such as enthalpy and entropy, were calculated and fell in the range 2–15 kJ/mol and 3–54 J/mol/K, respectively. Both first‐ and second‐order transport kinetics models were used to investigate the transport kinetics, and first‐order kinetics were followed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1366–1375, 2003  相似文献   

20.
Organic solvent–insoluble portions included in the varying type of ethylene–propylene–diene terpolymers (EPDM) were analyzed by the solubility test, differential scanning calorimetry, x-ray diffraction, infrared spectrometry and the electron microscope. It was found that insoluble portions are resolved into microcrystalline gel owing to association of the long ethylene linkage and the crosslinking gel based on the presence of the third component by the variety of EPDM. The differences in the analytical results of the microcrystalline gel was ascribed to the differences in the monomer sequence distribution along the polymer chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号