首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The polymerization‐induced phase‐separation behavior of a thermoplastic [poly(ether sulfone) (PES)]‐ modified thermosetting bismaleimide resin during isothermal curing was investigated with differential scanning calorimetry, time‐resolved light scattering, and scanning electron microscopy with various contents and molecular weights of PES. The results suggested that the phase structure changed from a dispersed structure to a bicontinuous structure to phase inversion with an increase in the PES content. Three kinds of PES with different molecular weights were used to study the effects of the molecular weight on the phase structure and mechanical properties of modified systems. With higher molecular weight PES, a phase‐inversion morphology could be obtained at lower PES contents. The curing conversion of bismaleimide was affected by the composition of the blend. The curing rate decreased with an increase in the PES content. A blend with 15 wt % PES of a suitable molecular weight had a higher tensile strength and elongation at break than that without PES. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Mechanical properties such as the tensile modulus, yield (break) strength, and elongation to break (or yield) are measured for multiphase poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) blends. Specimens with three different levels of thermal histories (quenched, as‐molded, and annealed) are prepared in order to study their effects on the mechanical properties of PEEK/PES blends. Synergistic behavior is observed in the tensile modulus and tensile strength of the blends in almost the whole range of compositions. The ductility of quenched blends measured as the elongation to break (yield) shows an unexpected synergistic behavior in the blend containing 90 wt % PEEK, although a negative deviation from additive behavior is observed in the rest of the compositions. A ductile–brittle transition is observed between 50 and 75 wt % PEEK in the blend. The ductile–brittle transition in as‐molded blends shifts to 75–90 wt % PEEK. Annealed blends show predominantly brittle behavior in the whole composition range. The experimental data are further correlated with the theoretically predicted results based on various composite models. Although the prediction based on these equations fails to fit the experimental data in the whole composition range, the simplex equations that are normally used for blends showing synergistic behavior produced a reasonable fit to the experimental data. The mechanical properties obtained for different blend compositions are further correlated with their morphology as observed by scanning electron microscopy. Morphological observation shows a two‐phase morphology in PES‐rich blends, which is an interlocked morphology in which the disperse phase is not clearly visible in PEEK‐rich blends, and a cocontinuous type of morphology for a 50/50 composition. Considerable permanent deformation of both the disperse and matrix phase, especially in the case of quenched tensile specimens, demonstrates the remarkable adhesion present between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2887–2905, 2003  相似文献   

3.
Considering the complementary properties of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)], it appears that their blends have the potential to be promising candidates for device applications. We report the evolution of morphology, ferroelectric, and mechanical properties (modulus and hardness) and their dependence on preparation temperature for PVDF–P(VDF‐TrFE) blends. From ferroelectric hysteresis measurements it was found that P(VDF‐TrFE) rich blends treated at higher temperature show significant values of remanent polarization. Remanent polarization values show a fourfold increase in these P(VDF‐TrFE) rich blends treated at higher temperature. Interestingly, blends prepared from high temperature showed greater value of remanent polarization even though they were found to consist of smaller amount of electroactive phase as compared to their low temperature treated counterpart. Nanoindentation experiments revealed that high temperature treatment improves the modulus of blends by at least 100%. This report attempts to tie these findings to the morphology and crystallinity of these blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45955.  相似文献   

4.
The structure, thermal and mechanical properties of blends of poly(butylene terephthalate) (PBT) and a poly(amino–ether) (PAE) barrier resin obtained by direct injection molding are reported. The slight shift of the glass transition temperatures (Tg) of the pure components when blended is attributed to partial miscibility rather than interchange reactions. Both the small strain and the break properties of the blends were close or even above those predicted by the direct rule of mixtures. The specific volume of the blends appeared to be the main reason for the modulus behavior. The linear values of the elongation at break indicated that the blends were compatible, and were attributed to a combination of good adhesion between the two phases of the blends and the small size of the dispersed phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 132–139, 2004  相似文献   

5.
The mechanical, structural, and thermal properties of injection‐molded composites of granular cornstarch, poly(D ,L ‐lactic acid) (PDLLA), and poly(hydroxy ester ether) (PHEE) were investigated. These composites had high tensile strengths, ranging from 17 to 66 MPa, at starch loadings of 0–70 wt %. Scanning electron microscopy micrographs of fracture specimens revealed good adhesion between the starch granule and the polymer matrix, as evidenced by broken starch granules. The adhesion of the starch granules to the polymer matrix was the greatest when the matrix PDLLA/PHEE ratios ranged from zero to unity. At a PDLLA/PHEE ratio of less than unity, as the starch content increased in the composites, there was an increase in the tensile strength and modulus, with a concurrent decrease in elongation. The effects of starch on the mechanical properties of starch/PDLLA composites showed that as the starch content of the composite increased, the tensile strength and elongation to break decreased, whereas Young's modulus increased. In contrast, the tensile strength of starch/PHEE composites increased with increasing starch content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1775–1786, 2003  相似文献   

6.
α,ω‐Dihydroxy‐polydimethylsiloxane (PDMS)/poly(methyl methacrylate) (PMMA) blends were prepared by the radical polymerization of methyl methacrylate in the presence of PDMS, with benzoyl peroxide as the initiator. The PDMS/PMMA blends obtained by this method were a series of stable, white gums, which were vulcanized into elastomers at room temperature with methyl triethoxysilicane (MTES). The MTES dosage was much larger than the amount necessary for end‐linking the hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed into crosslinked networks, which were similar to SiO2 and acted as fillers. Investigations were carried out on the elastomeric materials by extraction measurements, swelling measurements, and scanning electron microscopy. The extraction data showed that at each composition, the sol fraction was less than expected. The extracted materials were further studied with swelling measurements, which revealed that the material obtained from an elastomer with a higher PMMA content had an apparently larger equilibrium swelling degree. Scanning electron microscopy demonstrated that the elastomer system had a microphase‐separated structure consisting of PMMA domains within a continuous PDMS matrix. Moreover, the mechanical properties of the elastomeric materials were studied in detail. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1547–1553, 2006  相似文献   

7.
Poly(lactic acid), as a natural source polymer, was used to prepare pervaporation dense membranes. The performance of these membranes for the separation of the methanol (MeOH)/methyl tert‐butyl ether (MTBE) mixtures was investigated. The effects of different operating conditions, including the feed concentration of MeOH, temperature, and flow rate, were examined. Several characterization tests were performed as well. The swelling results, scanning electron microscopy images, contact angles, and mechanical strength measurements are presented. These membranes were found to be selective to MeOH, particularly for traces of MeOH in MTBE with a separation factor of more than 30. There was a small decrease in the separation factor when the feed temperature was increased; meanwhile, the total flux increased to some extent. This could be explained with respect to the thermal motions of the polymer chains and the permeating molecules. With an increase in the feed flow rate, both the selectivity and total flux increased because the concentration and temperature polarizations decreased. At higher flow rates, the feed components were homogeneously distributed over the membrane surface, whereas there may have been a concentration or temperature gradient at lower flow rates. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A series of new crosslinked copoly(urethane‐methacrylate)s (CPUAs) were synthesized by the polymerization of new urethane–methacrylate macromonomers with double bonds at the end of the chain, which were prepared from isophorone diisocyanate, β‐hydroxyethyl methacrylate, different content of poly(1,2‐propanediol ortho‐phthalate) (PPP), and poly(ethylene glycol) 600. The properties of CPUAs were measured by dynamic mechanical analysis, thermogravimetric analysis, wide‐angle X‐ray diffraction, water uptake, and optical properties testing, and mechanical performance measurements. The results revealed that the greater PPP contents in the CPUAs lead to the higher glass transition temperature, hardness, lower thermal stability, and water uptake. Obtained CPUAs present the good transparence. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Blends of linear low density polyethylene (LLDPE) and ethene‐propene‐1‐butene copolymer (t‐PP) were obtained through mechanical mixing using a single‐screw extruder with different compositions: 20, 40, 50, 60, and 80 wt % of t‐PP. For this, two types of polyethylene were used: 1‐hexene comonomer and 1‐octene comonomer based. The same blends were prepared in a batch mixer and the torque and temperature were analyzed. The torque showed a decrease with increasing t‐PP content, indicating better processability of the mixture in comparison with LLDPE. The morphology of the blends was analyzed by SEM and showed a composition dependence. The mechanical properties of the blends were evaluated by tensile tests. The results revealed that the best properties were obtained in a 20% t‐PP blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1255–1261, 2006  相似文献   

10.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

11.
In this work, we present the synthesis and characterization of chemically crosslinked polyurethanes (PU) composed of poly(ethylene glycol) (PEG) and poly(caprolactone) diol (PCL‐diol), as hydrophilic and hydrophobic segments respectively, poly(caprolactone) triol (PCL‐triol), to induce hydrolysable crosslinks, and hexamethylene diisocyanate (HDI). The syntheses were performed at 45 °C, resulting in polyurethanes with different PEG/PCL‐diol/PCL‐triol mass fractions. All the PUs are able to crystallize and their thermal properties depend on the global composition. The water uptake capacities of the PU increase as the PEG amount increases. The water into hydrogels is present in different environments, as bounded, bulk and free water. The PU hydrogels are thermo‐responsive, presenting a negative dependence of the water uptake with the temperature for PEG rich networks, which gradually changes to a positive behavior as the amount of poly(caprolactone) (PCL) segments increases. However, the water uptake capacity changes continuously without an abrupt transition. Scanning electron microscopy (SEM) analyses of the hydrogel morphology after lyophilization revealed a porous structure. Mechanical compression tests revealed that the hydrogels present good resilience and low recovery hysteresis when they are subject to cycles of compression–decompression. In addition, the mechanical properties of the hydrogels varies with the composition and crosslinking density, and therefore with the water uptake capacity. The PU properties can be tuned to fit for different applications, such as biomedical applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43573.  相似文献   

12.
In this study, mechanical properties such as tensile properties, flexural properties, and Izod impact strength of poly(ether ether ketone) (PEEK) and poly(ether ketone) (PEK) blends at PEK concentration from 0 to 0.42 volume fraction were studied. The blends of PEEK and PEK of different compositions were prepared by extrusion in a single‐screw extruder. With increase in the PEK concentrations, the tensile strength, flexural strength, and modulus increased whereas the tensile modulus and the impact strength decreased. Homogeneous dispersion and adhesion of PEK in PEEK was shown by the morphological studies. Crystallinity of blends influenced the tensile modulus and the impact strength. Using simple models to relate normalized tensile parameters where the data were divided by the crystallinity of the blends and of the PEEK matrix, respectively, supported the experimental results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Phase morphology, rheological, and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE)/PP/organo‐montmorillonite nanocomposites were investigated in this work. The results of TEM and XRD indicated that the organo‐montmorillonite PMM prepared with the complex intercalator [2‐methacryloyloxyethyldodecyldimethylammonium bromide/poly(ethylene glycol)] were exfoliated and dispersed into UHMWPE matrix, and the synergistic effect of the complex intercalator on the exfoliation and intercalation for montmorillonite occurred. Besides, the presence of PMM in UHMWPE matrix was found able to lead to a significant reduction of melt viscosity and enhancement in tensile strength and elongation at break of UHMWPE, except that izod‐notched impact strength was without much obvious change. The dispersed PMM particles exhibited a comparatively large two‐dimensional aspect ratio (Lclay/dclay = 35.5), which played an important role in determining the enhancement of mechanical properties of UHMWPE nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Crosslinkable poly(arylene ether nitrile)/glass fiber (PEN/GF) composites with high thermal stabilities and mechanical properties were prepared by a economically and environmentally viable method of melt extrusion and injection molding. The feasibility of using PEN/GF composites was investigated by evaluating its morphological, rheological, thermal, and mechanical properties. The morphology shows a good dispersion and strong interfacial interaction between PEN and GF. Thermal studies reveal that the thermal stabilities of PEN/GF are improved significantly with increase of GF content. Mechanical investigation manifested that GFs have strengthening effect (increase in flexural, tensile, and impact strength) on the mechanical performance of PEN composites. Most importantly, crosslinking reaction of PEN/GF composites can further improve their mechanical performances, because a couple of GFs are agglomerated by thermal motion and strong interfacial adhesion and the local agglomeration does not break the global uniform distribution. This work shows that both the enhancement of GF content and the crosslinking reaction of PEN/GF composites are two key factors influencing the thermal and mechanical properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Epoxidized natural rubbers (ENRs) were prepared. ENRs with different concentrations of up to 20 wt % were used as modifiers for epoxy resin. The epoxy monomer was cured with nadic methyl anhydride as a hardener in the presence of N,N‐dimethyl benzyl amine as an accelerator. The addition of ENR to an anhydride hardener/epoxy monomer mixture gave rise to the formation of a phase‐separated structure consisting of rubber domains dispersed in the epoxy‐rich phase. The particle size increased with increasing ENR content. The phase separation was investigated by scanning electron microscopy and dynamic mechanical analysis. The viscoelastic behavior of the liquid‐rubber‐modified epoxy resin was also evaluated with dynamic mechanical analysis. The storage moduli, loss moduli, and tan δ values were determined for the blends of the epoxy resin with ENR. The effect of the addition of rubber on the glass‐transition temperature of the epoxy matrix was followed. The thermal stability of the ENR‐modified epoxy resin was studied with thermogravimetric analysis. Parameters such as the onset of degradation, maximum degradation temperature, and final degradation were not affected by the addition of ENR. The mechanical properties of the liquid‐natural‐rubber‐modified epoxy resin were measured in terms of the fracture toughness and impact strength. The maximum impact strength and fracture toughness were observed with 10 wt % ENR modified epoxy blends. Various toughening mechanisms responsible for the enhancement in toughness of the diglycidyl ether of the bisphenol A/ENR blends were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39906.  相似文献   

16.
A high temperature thermosetting bisphenol‐A dicyanate (BADCy) was modified with polyetherimide (PEI) at various compositions. The effects of the morphology of the blends on the fracture toughness and mechanical properties were investigated. For this purpose, fracture, flexural, and compression tests were carried out. The fracture surfaces of the broken specimens were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The morphology was controlled by changing the curing conditions and PEI content. A good correlation between fracture properties and microstructural features of the mixtures has been observed. The phase‐inverted morphologies showed the highest fracture toughness, which was further increased by increasing the cure temperature. The mechanical properties of the matrix (modulus, yield strength) were not affected by the addition of the thermoplastic. Fracture energy values show similar trends for the different mechanical tests performed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2759–2767, 2001  相似文献   

17.
The miscibility of polystyrene with poly(butyl acrylate) is very poor. Ionic interactions have been utilized recently as miscibility enhancers. In this paper, dynamic mechanical studies indicate that ion pair–ion pair interactions can be utilized to achieve miscibility in blends of polystyrene and poly(butyl acrylate). The styrenes contain 0–15mol% quaternary ammonium salt of 4-vinylpyridine, while the butyl acrylates contain 0–15mol% potassium acrylate groups. The miscibility increases with increase of ion content. When the ion content exceeds 11mol%, the polymers can be completely miscible. The mechanical properties of the ionomers and their blends were also studied. The results indicate that the tensile strength of ionomer blends is higher than that of corresponding poly(butyl acrylate-co-potassium acrylate)s (PBA-AA-K). The elongation at break of ionomer blends is higher than that of the corresponding poly(styrene-co-N-methyl-4-vinylpyridinium iodide) (PS-4VP-Q). © 1998 SCI.  相似文献   

18.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

19.
Hydroxy‐terminated poly(arylene ether nitrile) oligomers with pendent tert‐butyl groups (PENTOH) were synthesized by the nucleophilic aromatic substitution reaction of 2,6‐dichlorobenzonitrile with tert‐butyl hydroquinone in N‐methyl‐2‐pyrrolidone medium with anhydrous potassium carbonate as a catalyst at 200°C in a nitrogen atmosphere. The PENTOH oligomers were blended with diglycidyl ether of bisphenol A epoxy resin and cured with 4,4′‐diaminodiphenyl sulfone. The curing reaction was monitored with infrared spectroscopy and differential scanning calorimetry. The morphology, fracture toughness, and thermomechanical properties of the blends were investigated. The scanning electron micrographs revealed a two‐phase morphology with a particulate structure of the PENTOH phase dispersed in the epoxy matrix, except for the epoxy resin modified with PENTOH with a number‐average molecular weight of approximately 4000. The storage modulus of the blends was higher than that of the neat epoxy resin. The crosslink density calculated from the storage modulus in the rubbery plateau region decreased with an increase in PENTOH in the blends. The fracture toughness increased more than twofold with the addition of PENTOH oligomers. The tensile strength of the blends increased marginally, whereas the flexural strength decreased marginally. The dispersed PENTOH initiated several toughening mechanisms, which improved the fracture toughness of the blends. The thermal stability of the epoxy resin was not affected by the addition of PENTOH to the epoxy resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Compatible poly(trimethylene terephthalate) (PTT)/poly(hydroxy ether of bisphenol A) (Phenoxy) blends were obtained by direct injection molding throughout the composition range. Two amorphous phases with minor amounts of the other component were found in the blends. Reactions occurred in PTT‐rich blends. By comparing the miscibility level of these blends with that of other blends based on polyalkylene terephthalates, it is proposed that a miscibility limit delimited by a 3/1 methylene–carbonyl ratio in the polyalkylene terephthalate exits in these blends. The synergism in the Young's modulus of the blends is discussed as a consequence of the changes in the crystallinity of PTT, the specific volume and the orientation produced by blending. Ductility is approximately proportional to blend composition, indicating compatibility, and is attributed to the combined effects of a small particle size and a good adhesion level, the latter being a consequence of the partially miscible nature of the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3246–3254, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号