首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Two polyethylene/polypropylene (PE/PP) in‐reactor alloy samples were synthesized by multi‐stage gas‐phase polymerization using a spherical Ziegler–Natta catalyst. The alloys show excellent toughness and stiffness. FTIR, 13C‐NMR and thermal analysis proved that the alloys are mainly composed of polyethylene, PE‐block‐PP copolymer and polypropylene. There are also a few percent of ethylene‐propylene segmented copolymer with very low crystallinity. The block copolymer fraction accounts for more than 25 % of the alloy. The role of the block copolymer as compatibilizer between PE and PP is believed to be the key factor that results in the excellent toughness–stiffness balance of the material. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
A series of spherical polyethylene/polypropylene (PE/PP) in‐reactor alloys were synthesized with spherical high‐yield Ziegler–Natta catalyst by sequential multistage polymerization in slurry. The morphology of PE/PP alloy granule was evaluated by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results show PE/PP in‐reactor alloy with excellent morphology, high porosity, and narrow distribution of the particle size. The PE/PP in‐reactor alloys show excellent mechanical properties with good balance between toughness and rigidity. It was fractionated into five fractions by temperature‐gradient extraction fractionation, and every fractionation was analyzed by FTIR, 13C‐NMR, DSC, and WAXD. The PE/PP in‐reactor alloy was found to contain mainly five portions: PP, PE, segmented copolymer with PP and PE segment of different length, ethylene‐b‐propylene copolymer, and an ethylene–propylene random copolymer. The characteristic chain structure leads to good compatibility between the fractions of the alloy that shows a multiphase structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2075–2085, 2007  相似文献   

3.
Two polyethylene/polypropylene/poly(ethylene‐co‐propylene) in‐reactor alloy samples with a good polymer particle morphology were synthesized by sequential multistage gas‐phase polymerization with a spherical Ziegler–Natta catalyst. The alloys showed excellent mechanical properties, including both toughness and stiffness. With temperature‐gradient extraction fractionation, both alloys were fractionated into five fractions. The chain structures of the fractions were studied with Fourier transform infrared, 13C‐NMR, and thermal analysis. The alloys were mainly composed of polyethylene, polyethylene‐b‐polypropylene block copolymer, and polypropylene. There also were minor amounts of an ethylene–propylene segmented copolymer with very low crystallinity and an ethylene–propylene random copolymer. The block copolymer fraction accounted for more than 44 wt % of the alloys. The coexistence of these components with different structures was apparently the key factor resulting in the excellent toughness–stiffness balance of the materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 640–647, 2005  相似文献   

4.
A commercial high‐impact polypropylene (hiPP) was fractionated by temperature‐gradient elution fractionation into nine fractions. All fractions were studied using Fourier transform infrared spectroscopy and differential scanning calorimetry. The amount of ethylene in the fractions was also determined. The results demonstrate that the ethylene–propylene statistical copolymer (or ethylene–propylene rubber, EPR) content in this hiPP is rather low and the amounts of ethylene–propylene segmented copolymer and ethylene–propylene block copolymer (that act as adhesive and compatibilizer between elastomeric phase and matrix, respectively) are negligible. Furthermore, the morphology of the resin was studied using scanning electron microscopy observations of microtome‐cut original and etched samples, which reveals that EPR particles are too large and their distribution inside the matrix is not uniform. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of polyethylene/polypropylene/poly (ethylene‐co‐propylene) in‐reactor alloys by sequential homopolymerization of ethylene, homopolymerization of propylene, and copolymerization of ethylene and propylene in gas‐phase. Different conditions in the third stage, such as the pressure of ethylene–propylene mixture and the feed ratio of ethylene, were investigated, and their influences on the compositions, structural distribution and properties of the in‐reactor alloys were studied. Increasing the feed ratio of ethylene is favorable for forming random ethylene–propylene copolymer and segmented ethylene–propylene copolymer, however, slightly influences the formation of ethylene‐b‐propylene block copolymer and homopolyethylene. Raising the pressure of ethylene–propylene mixture results in the increment of segmented ethylene–propylene copolymer, ethylene‐b‐propylene block copolymer, and PE fractions, but exerts a slight influence on both the random copolymer and PP fractions. The impact strength of PE/PP/EPR in‐reactor alloys can be markedly improved by increasing the feed ratio of ethylene in the ethylene–propylene mixture or increasing the pressure of ethylene–propylene mixture. However, the flexural modulus decreases as the feed ratio of ethylene in the ethylene–propylene mixture or the pressure of ethylene–propylene mixture increases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2481–2487, 2006  相似文献   

6.
In this work, a series of polypropylene/poly(ethylene‐co‐propylene) (iPP/EPR) in‐reactor alloys were prepared by MgCl2/TiCl4/diester type Ziegler‐Natta catalyst with triethylaluminium/triisobutylaluminium (TEA/TIBA) mixture as cocatalyst. The influence of cocatalyst and external electron donor, e.g., diphenyldimethoxysilane (DDS) or dicyclopentyldimethoxysilane (D ‐donor), on the structure and mechanical properties of iPP/EPR in‐reactor alloys were studied and discussed. According to the characterization results, PP/EPR was mainly composed of random poly(ethylene‐co‐propylene), segmented poly(ethylene‐co‐propylene), and high isotactic PP. Using TEA/TIBA mixture as cocatalyst and DDS as external electron donor, as TEA/TIBA ratio increased, the impact strength of iPP/EPR in‐reactor alloys had an increasing trend. Using TEA/TIBA mixture as cocatalyst and D ‐donor as external electron donor, the impact strength of iPP/EPR in‐reactor alloy were dramatically improved. In this case, the iPP/EPR in‐reactor alloy prepared at TEA: TIBA = 4 : 1 was the toughest. The influence of cocatalyst and external electron donor on the flexural modulus and flexural strength could be ignored. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A series of isotactic polybutene‐1/polypropylene (PB/PP) alloys with spherical morphology were prepared by MgCl2‐supported Ziegler‐Natta catalyst with sequential two‐stage polymerization technology. The first formed PP particles were used as micro‐reactors to initiate the bulk precipitation polymerization of butene‐1 further. The porous PP particles as a hard framework may prevent the adhesion of PB particles during the bulk precipitation polymerization process. At the same time, the bulk precipitation polymerization process allows for maximization of the butene‐1 polymerization rate and simplifies the butene‐1 polymerization process considerably. Finally, spherical PB alloys with a super‐high molecular weight PB component and adjustable PP component were synthesized in situ within the reactor. The structures and properties of the PB/PP alloys were characterized by gel permeation chromatography, 13C nuclear magnetic resonance, Fourier transform IR, scanning electron microscopy, differential scanning calorimetry and X‐ray diffraction. The results showed that the MgCl2‐supported Ziegler‐Natta catalyst showed relatively high stereospecificity and efficiency for both propylene and butene‐1 polymerization. The incorporation of propylene on the PB matrix affects the properties of the final products markedly. The PB/PP alloys are expected to have a broader range of applications as a new family of high performance materials. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
The effect of the branch content (BC) and composition distribution (CD) of linear low‐density polyethylene (LLDPE) on the thermal and mechanical properties of its blends with LDPE were studied. All blends and pure resins were conditioned in a Haake PolyDrive blender at 190°C and in the presence of adequate amounts of antioxidant. Two metallocene LLDPEs (m‐LLDPE) and one Ziegler–Natta (ZN) hexene LLDPE were melt blended with the same LDPE. The effect of the BC was investigated by blending two hexene m‐LLDPEs of similar weight‐average molecular weights and molecular weight distributions but different BCs with the same LDPE. The effect of the CD was studied by using a ZN and an m‐LLDPE with similar weight‐average molecular weights, BCs, and comonomer type. Low‐BC m‐LLDPE blends showed separate crystallization whereas cocrystallization was observed in the high‐BC m‐LLDPE‐rich blends. However, ZN‐LLDPE/LDPE blends showed separate crystallization together with a third population of cocrystals. The influence of the crystallization behavior was reflected in the mechanical properties. The BC influenced the modulus, ultimate tensile strength, and toughness. The addition of a small amount of LDPE to a low‐BC m‐LLDPE resulted in a major improvement in the toughness, whereas the results for the high‐BC pair followed the additivity rule. ZN‐LLDPE blends with LDPE blends were found to be more compatible and exhibited superior mechanical properties compared to m‐LLDPE counterparts with the same weight‐average molecular weight and BC. All mechanical properties of ZN‐LLDPE blends follow the linear rule of mixtures. However, the CD had a stronger influence on the mechanical properties in comparison to the BC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2488–2498, 2005  相似文献   

9.
The slurry prepolymerization of ethylene using TiCl4/MgCl2 as a catalyst was investigated. A 23‐factorial experimental design method was employed to study the effects of the temperature, hydrogen, and active cocatalyst‐to‐catalyst molar ratio (Al/Ti) on the catalyst activity, prepolymer melt flow index, and powder bulk density. All dependent variables increased when the active Al/Ti ratio increased from 1 to 2. The hydrogen–Al/Ti interaction had a significant effect on the prepolymer melt flow index and catalyst activity. The hydrogen (partial pressure ranging from 0.5 to 1.5 bar) and temperature (ranging from 60 to 80°C) variables as well as the hydrogen–temperature and hydrogen–temperature–Al/Ti interactions increased the prepolymer powder bulk density, which ranged from 0.11 to 0.373 g/cc. To find the reason for the prepolymer powder bulk density variation with the operating conditions, the particle size distribution and crystallinity of the prepolymers were determined. The increasing catalyst activity, ranging from 132 to 660 g of polyethylene/mmol of Ti, enhanced the weight percentage of fines, which ranged from 3 to 60, and decreased the average particle size, which ranged from 562 to 120 μm. This was the reason for the increasing prepolymer powder bulk density and could be due to the breakup of the prepolymer particles during prepolymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
2,6‐Bis(imino)pyridyl iron catalyst and traditional Ziegler–Natta catalyst were combined together as tandem catalytic system, activated with the mixture of TEA and MAO, and used for synthesis of branched polyethylene by in situ polymerization of ethylene. The branched polyethylene with branches from 8/1000C to 29/1000C was produced by adjusting reaction conditions: the amount of TEA, MAO, iron catalyst used, and reaction temperatures. Not only the short branches such as ethyl and butyl but also the longer branches (hexyl and longer than hexyl) were detected in the products. The products exhibited higher molecular weight and broader molecular weight distribution than those obtained from metallocene catalysts, which would provide the materials excellent mechanical properties and processability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

11.
David R. Burfield 《Polymer》1984,25(12):1817-1822
The use of diethylzinc in conjunction with conventional and supported Ziegler—Natta catalysts permits the synthesis of polypropylene and polyethylene samples with g.p.c. M?n values as low as 4000 and 3000 respectively. At high diethylzinc concentrations the number of metal—polymer bonds appears to be 40% for polypropylene and 50% for polyethylene respectively, as measured by a tritium-quench radiotracer method. The metal-bound macromolecules can be efficiently oxidized with molecular oxygen at 60°C, and subsequently hydrolysed to give hydroxy-tipped polymers. The oxidation efficiency appears to be variable and to be lower at high diethylzinc concentrations.  相似文献   

12.
Ultra‐high‐molecular‐weight polyethylene (PE) with viscosity‐average molecular weight (Mv) of 3.1 × 106 to 5.2 × 106 was prepared with a heterogeneous Ziegler–Natta MgCl2 (ethoxide type)/TiCl4/triethylaluminum catalyst system under controlled conditions. The optimum activity of the catalyst was obtained at a [Al]/[Ti] molar ratio of 61 : 1 and a polymerization temperature of 60°C, whereas the activity of the catalyst increased with monomer pressure and decreased with hydrogen concentration. The titanium content of the catalyst was 2.4 wt %. The rate/time profile of the catalyst was a decay type with a short acceleration period. Mv of the PE obtained decreased with increasing hydrogen concentration and polymerization temperature. The effect of stirrer speeds from 100 to 400 rpm did not so much affect the catalyst activity; however, dramatic effects were observed on the morphology of the polymer particles obtained. A stirrer speed of 200 rpm produced PE with a uniform globulelike morphological growth on the polymer particles. The particle size distributions of the polymer samples were determined and were between 14 and 67 μm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
This study reports a novel one‐step method to synthesize a new spherical support for Ziegler‐Natta catalyst under moderate condition. The support is obtained from a dispersion system where the particle stabilizer polyvinylpyrrolidone plays a main role to stabilize the spherical particles. The new chemical of the support is CH3CH2OMgOCH(CH2Cl)2, which is first reported here, has been approved by newly filed patents and also confirmed by solution NMR, solid state NMR, pyrolysis‐gas chromatography‐mass spectrometry (Py‐GC‐MS), and ICP‐MS. The support and catalyst particles have uniform distributions. The catalyst prepared from this support has been evaluated with high activity. The polypropylene obtained has high isotacticity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41014.  相似文献   

14.
The microstructure of the isotactic polypropylene obtained with various MgCl2‐supported catalyst systems at high polymerization temperature of 70–100°C is investigated by discussing the intrinsic relation between the different types of active centers and the polymerization temperatures via gel permeation chromatography, temperature rising elution fractionation, and 13C NMR. For the MgCl2/TiCl4/di‐n‐butyl phathalate‐AlEt3/external donor and MgCl2/TiCl4/2,2‐diisobutyl‐1,3‐dimethoxypropane‐AlEt3 catalyst systems, the differences in the isotactic productivity of polymers obtained at different polymerization temperatures mainly result from the variation of both the activity of the different isospecific active centers and the stability constants of the complex of catalyst/donor. The reaction rate of high isotactic active centers reaches maximum at 85–90°C, and this effect contributes to both the highest isotacticity and the narrowest molecular weight distribution. For the MgCl2/TiCl4/phthalate ester‐AlEt3 catalyst system, the isotacticity of polypropylene remains approximately constant in the temperature range of experiments, which could be ascribed to elution of phthalate ester after the activation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42487.  相似文献   

15.
Spherical MgCl2·nEtOH was prepared by adducting ethanol to MgCl2 using melt quenching method. Effect of molar ratio of [EtOH]/[MgCl2] = 2.8–3.05 on the morphology and particle size of the MgCl2·nEtOH were studied. The best adduct of spherical morphology was obtained when 2.9 mol ethanol to 1 mol MgCl2 was used. An emulsion of dissolved MgCl2 in ethanol was prepared in a reactor containing silicon oil. Stirrer speed of the emulsion and its transfer rate to quenching section that work at ?10 to ?40°C are affected by the particle size of the adduct particle. The adducted ethanol was partially removed with controlled heat primary to catalyst preparation (support). Treatment of the support with excess TiCl4 increased its surface area from 13.1 to 184.4 m2/g. Heterogeneous Ziegler‐Natta catalyst system of MgCl2 (spherical)/TiCl4 was prepared using the spherical support. Scanning electron microscopy studies of adduct, support, and catalyst obtained shown spherical particles, however, the polyethylene particles obtained have no regular morphology. The behavior indicates harsh conditions used for catalyst preparation, prepolymerization, and polymerization method used. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3829–3834, 2006  相似文献   

16.
Polyethylene/clay nanocomposites (PECNC) were synthesized via in situ Ziegler‐Natta catalyst polymerization. Activated catalyst for polymerization of ethylene monomer has been prepared at first by supporting of the cocatalyst on the montmorillonite (MMT) smectite type clay and then active complex for polymerization formed by reaction of TiCl4 and aluminum oxide compound on the clay. Acid wash treatment has been used for increasing hydroxyl group and porosity of the clay and subsequently activity of the catalyst. The nanostructure of composites was investigated by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Obtained results show that silica layers of the mineral clay in these polyethylene/nanocomposites were exfoliated, intercalated, and uniformly dispersed in the polyethylene matrix even at very high concentration of the clay. Thermogravimetric analysis (TGA) shows good thermal stability of the PECNCs. Differential scanning calorimeter (DSC) results reveal considerable decrease in the crystalline phase of the PECNC samples. Results of permeability analysis show an increase in barrier properties of PECNC films. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

17.
Composites of polypropylene/natural fiber were obtained synthesizing polypropylene in the presence of chemically treated fibers. For this, vegetal cellulose fibers were introduced in the polymerization medium of propylene using Ziegler‐Natta catalyst. The fibers were treated to increase their compatibility with the polypropylene matrix and decrease the accessibility of functional groups to the catalyst active sites. At first, mild acid hydrolysis was performed, followed by chemical treatments with triethylaluminum and stearic alcohol. The results showed that the chemical treatments increased the crystallinity index to 73–77% in comparison with the original fiber (57.6%). The catalyst activity and its stereospecificity maintained high when fiber was treated with triethylaluminium and that with stearic alcohol. The composites contained amounts of fiber in a range of 3.1–5.8%. The fibers did not induce crystallization of PP crystallites different from the most common α‐form. Fibers were fibrillated to nanometric diameter, although micrometric length. POLYM. ENG. SCI., 56:71–78, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
Polyethylene hollow spheres with diameters of 0.4–2 mm were synthesized by a two‐step slurry polymerization in a single reactor with a spherical MgCl2‐supported Ziegler‐Natta catalyst activated by triethylaluminum, in which the first step was prepolymerization with 0.1 MPa propylene and the second step was ethylene polymerization under 0.6 MPa. The prepolymerization step was found necessary for the formation of hollow spherical particles with regular shape (perfectly spherical shape). The effects of adding small amount of propylene (propylene/ethylene < 0.1 mol/mol) in the reactor after the prepolymerization step were investigated. Average size of the polymer particles was increased, and the polymerization rate was markedly enhanced by the added propylene. Development of the particle morphology with polymerization time was also studied. The polymer particles formed by less than 20 min of ethylene polymerization showed hollow spherical morphology with thin shell layer. Most of the particles had ratio of shell thickness/particle radius smaller than 0.5. By prolonging the ethylene polymerization, the shell thickness/particle radius ratio gradually approached 1, and the central void tended to disappear. Central void in polymer particles formed from smaller catalyst particles disappeared after shorter time of polymerization than those formed from bigger catalyst particles. The shell layer of the hollow particles contained large number of macro‐, meso‐ and micro‐pores. The mesopore size distributions of four typical samples were analyzed by nitrogen adsorption–desorption experiments. A simplified multigrain model was proposed to explain the morphogenesis of the hollow spherical particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43207.  相似文献   

19.
Polypropylene (PP) was synthesized in the presence of Ziegler–Natta catalysts composed of MgCl2‐TiCl4‐internal donor/AlR3‐external donor. Diisobutyl phthalate is a well‐known internal donor in current PP production. Nevertheless, phthalates are often blamed as endocrine disruptors. The objective is to find an ecofriendly internal donor producing PP with maintaining its physical properties. When using dibenzoyl sulfide, synthesized PP shows the superiority to diisobutyl phthalate in the activity of catalyst (40 vs. 22 kg PP/g catalyst), the isotacticity of polymer (99.5 vs. 98.0 wt % of heptane insolubles), and the molecular weight distribution of PP product (Mw/Mn = 4.8 vs. 4). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40743.  相似文献   

20.
In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler‐Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential scanning calorimetric was used to investigate both melting and crystallization temperatures, as well as the crystallinity of the PPCNC samples. Results of permeability analysis showed significant increase in barrier properties of PPCNC films. Effective parameters on molecular weight and flow ability of produced samples such as Al/Ti molar ratio and H2 concentration were also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号