首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The inside cover illustrates an approach to creating line defects embedded in the interior of a self‐assembled photonic crystal, as reported by Zhao and co‐workers on p. 1917. Photoresist patterns are first constructed on the surface of a silica opal film by conventional optical photolithography. After regrowth of the silica colloidal crystal, photoresist line defects are successfully introduced into the self‐assembled silica colloidal crystal. Further processing results in an inverse opal with air‐core line defects embedded in its interior, which provides a prototype for future optical waveguide devices based on self‐assembled three‐dimensional photonic crystals.  相似文献   

3.
4.
The inside cover features a schematic illustration (right) and three representative electron microscopy images (left) of photonic‐crystal strips with controlled curvature. As reported by Kitaev and co‐workers on p. 2481, the curvature is induced by infiltration of polymer opal with alkoxide precursors to attain an overlayer that experiences controllable shrinkage upon hydrolysis. Both continuity and high structural order are perfectly preserved throughout precursor infiltration and polymer microsphere removal.  相似文献   

5.
The inside front cover illustrates reversible tuning of an intragap transmitting state induced by redox cycling, accomplished using a redox‐active polyferrocenylsilane polyelectrolyte multilayer planar defect embedded in a colloidal photonic crystal (CPC) synthesized by a bottom–up method combining colloidal self‐assembly and microcontact printing. In work reported on p. 2455 by Manners, Ozin, and co‐workers, the wavelength position of the defect state can be changed by changing the oxidation state of the ferrocene moieties in the polymer backbone. This could find applications in electrochemically tunable microcavities, and—if light emitters are incorporated—electrochemically tunable CPC‐based laser sources. Cover design by Ludovic Cademartiri.  相似文献   

6.
The inside cover shows an SEM image of a 3D‐interpenetrating electrochemical cell with submicrometer features, as reported by Stein and coworkers on p. 1750. The pores of an inverse‐opal carbon electrode are coated with a conformal layer of a polymer separator and infiltrated with vanadia to form the opposite electrode after lithiation. The idealized scheme illustrates lithium‐ion transport between the electrodes through the polymer membrane.  相似文献   

7.
Partial oxidation of macroporous silicon membranes with different pore wall thicknesses results in a regular compartmentalized structure of SiO2 domains separated by opaque silicon, as shown on the cover. Dertinger and co‐workers report on p. 3135 that control of the experimental conditions ensures the flatness of the partially oxidized macroporous silicon. Fluorescence crossover is minimized within the photonic crystal, enabling its use as a microarray support for sensitive bioanalytic applications, such as DNA hybridization.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Martin and co‐workers report on p. 405 that nanotubes formed from the conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT), as shown on the inside cover, can be used for the controlled release of anti‐inflammatory drugs. The fabrication process includes electrospinning of a biodegradable polymer, either poly(L ‐lactide) or poly(lactide‐co‐glycolide), into which the required drug is incorporated, followed by electrochemical deposition of the conducting polymer around the drug‐loaded electrospun nanofibers. Drug release from the nanotubes is achieved by external electrical stimulation of the nanotubes.  相似文献   

17.
18.
19.
20.
Chiral propeller architectures constructed from achiral molecules via hydrogen bonding self‐assembly, in addition to Frank–Pryce spherulitic droplet and fingerprint textures, are reported on p. 3229 by Cheng and co‐workers. It is found, for the first time, that neither molecular chirality nor a molecular bend is necessary to form a chiral phase, which is of particular interest for next‐generation biological and electro‐optical materials science and technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号