首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of interfiber distance on the interfacial properties in three‐dimensional multi‐E‐glass fiber/epoxy resin composites has been investigated using fragmentation test. In additions, the effect of the fiber surface treatment on the interfacial properties has been studied. The interfacial shear strength decreased with the decreasing the interfiber distance at the range of under 50 μm and the extent of the decreasing was more serious as the increasing of the number of adjacent fiber. This is probably due to the fact that the interface between the fiber and the resin was damaged by the adjacent fiber breaks and the damage increased with closing the interfiber spacing and the number of adjacent fiber. It was found that the interfacial shear strengths saturated when the interfiber distance was over 50 μm, the ones were saturated regardless of fiber surface treatment and the ones were in close agreement with those of the single fiber fragmentation test. Finally, the interfacial shear strength evaluated using three‐dimensional fragmentation tests are shown as real values in‐site regardless of fiber surface treatment, interfiber distance and existing of matrix cracks. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The single fiber fragmentation test has been modified by embedding multiple fibers into matrix resin. During testing, we examined the interfacial shear strengths between the fibers and the matrix. In addition, the time-dependent nature of the fragmentation process was considered. In the fragmentation test, we examined the failure process of two fibers placed far from each other, and we found that the failure profile of the two fibers were similar to the failure profiles from tests done on single fibers. When we examined three fibers, we found that the measured interfacial shear strength values were much greater than the shear strength values from either the single or two fiber tests. However, when we used three fibers, we found it difficult to control the interfiber spacing. Consequently, whenever the interfiber spacing was too small, breaks in one fiber caused breaks in the adjacent fiber. In conclusion, using multiple fibers in a fragmentation test has many merits, such as saving time in testing, ease of comparing the effects of fiber surface treatment, and testing different fibers in the same matrix exposed to the same processing conditions. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 67:1701–1709, 1998  相似文献   

3.
Effects of silica surface treatment on the impregnation process of silica fiber/phenolics composites were studied. Micro‐Wilhelmy method was used to evaluate the surface characterization of silanized silica fibers. The interlaminar shear strength (ILSS) measurements and the void contents of the silica fiber/phenolics composites were also performed. The interactions occurring between silica fiber and the components of phenolic resin solution can affect the contact angle between silica fiber and phenolic solution and the dynamic adsorption behavior of phenolic resin onto silica fiber. There are competitive adsorptions to different extent for phenolic resin and solvent onto silica fibers. Silica fibers as reinforcement treated by silane‐coupling agent, such as γ‐aminopropyl‐triethoxysilane, γ‐glycidoxypropyl‐trimethoxysilane, trimethylchlorosilane, and γ‐methacryloxypropyl‐trimethoxysilane, influence the mechanical interfacial properties of silica fiber/phenolics composites and the uniformity of resin distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
A method of interfacial shear strength evaluation, based on the length distribution of fibers pulled out from the tensile fracture surface of an oriented flax-reinforced composite, is applied to composites with vinyl ester and acrylated epoxidized soy oil resin matrices. Two approaches for characterizing the strength of fibers with modified Weibull distribution, fiber fragmentation tests and fiber tension tests, are compared in the analysis of pull-out data. Interfacial shear strength is found to increase by a few percent when loading rate is increased from 1.33% to 8%/min.  相似文献   

5.
In this work the effect of atmospheric plasma treatment on carbon fiber has been studied. The carbon fibers were treated for 1, 3 and 5 min with a He/O2 dielectric barrier discharge atmospheric pressure plasma. The fiber surface morphology, surface chemical composition and interfacial shear strength between the carbon fiber and epoxy resin were investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the single fiber composite fragmentation test. Compared to untreated carbon fibers, the plasma treated fiber surfaces exhibited surface morphological and surface composition changes. The fiber surfaces were found to be roughened, the oxygen content on the fiber surfaces increased, and the interfacial shear strength (IFSS) improved after the atmospheric pressure plasma treatment. The fiber strength showed no significant changes after the plasma treatment.  相似文献   

6.
An aqueous suspension deposition method was used to coat the sized carbon fibers T700SC and T300B with commercially carboxylic acid-functionalized and hydroxyl-functionalized carbon nanotubes (CNTs). The CNTs on the fiber surfaces were expected to improve the interfacial strength between the fibers and the epoxy. The factors affecting the deposition, especially the fiber sizing, were studied. According to single fiber-composite fragmentation tests, the deposition process results in improved fiber/matrix interfacial adhesion. Using carboxylic acid-functionalized CNTs, the interfacial shear strength was increased 43% for the T700SC composite and 12% for the T300B composite. The relationship between surface functional groups of the CNTs and the interfacial improvement was discussed. The interfacial reinforcing mechanism was explored by analyzing the surface morphology of the carbon fibers, the wettability between the carbon fibers and the epoxy resin, the chemical bonding between the fiber sizing and the CNTs, and fractographic observation of cross-sections of the composites. Results indicate that interfacial friction, chemical bonding and resin toughening are responsible for the interfacial improvement of nanostructured carbon fiber/epoxy composites. The mechanical properties of the CNT-deposited composite laminate were further measured to confirm the effectiveness of this strategy.  相似文献   

7.
This study is focused on the impact of oxygen plasma treatment on properties of carbon fibers and interfacial adhesion behavior between the carbon fibers and epoxy resin. The influences of the main parameters of plasma treatment process, including duration, power, and flow rate of oxygen gas were studied in detail using interlaminar shear strength (ILSS) of carbon fiber composites. The ILSS of composites made of carbon fibers treated by oxygen plasma for 1 min, at power of 125 W, and oxygen flow rate of 100 sccm presented a maximum increase of 28% compared to composites made of untreated carbon fibers. Furthermore, carbon fibers were characterized by scanning electron microscopy (SEM), tensile strength test, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopy analyses. It was found that the concentration of reactive functional groups on the fiber surface was increased after the plasma modification, as well the surface roughness, which finally improved the interfacial adhesion between carbon fibers and epoxy resin. However, high power and long exposure times could partly damage the surface of carbon fibers and decrease the tensile strength of filaments and ILSS of treated fiber composites.  相似文献   

8.
The single fiber fragmentation test was used to investigate the effect of gelation time on interfacial shear properties of fast reacting resin systems. We developed a processing system capable of producing single fiber fragmentation samples with gelation times that ranged from 2 min to 45 min. The interfacial properties of E‐glass fibers in vinyl ester resin were measured with single fiber fragmentation tests using a manual and an automated testing machine. We found that vinyl ester resins catalyzed with methyl ethyl ketone peroxide and promoted with cobalt naphthenate and dimethylaniline gelled in less than two minutes and had an estimated interfacial shear strength of 105 MPa. Specimens cured without the promoter gelled in 45 min and had an interfacial shear strength of 72 MPa. Further curing of the unpromoted specimens resulted in an increase in shear strength to 96 MPa. We have demonstrated the ability to make and test rapidly cured specimens, thus expanding the range of materials that can be tested using the single fiber fragmentation testing technique.  相似文献   

9.
The mutual irradiated aramid fibers in 1,4‐dichlorobutane was ammoniated by ammonia/alcohol solution, in an attempt to improve the interfacial properties between aramid fibers and epoxy matrix. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS), and single fiber tensile testing were carried out to investigate the functionalization process of aramid fibers and the interfacial properties of the composites. Experimental results showed that the fiber surface elements content changed obviously as well as the roughness through the radiation and chemical reaction. The surface energy and IFSS of aramid fibers increased distinctly after the ammonification, respectively. The amino groups generated by ammonification enhanced the interfacial adhesion of composites effectively by participating in the epoxy resin curing. Moreover, benefited by the appropriate radiation, the tensile strength of aramid fibers was not affected at all. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44924.  相似文献   

10.
The fiber–matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3‐aminopropyl)trimethoxysilane, [3‐(2‐aminoethylamino)propyl]‐trimethoxysilane, trimethoxy[2‐(7‐oxabicyclo[4.1.0]hept‐3‐yl)ethyl]silane and (3‐glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength results was performed in terms of statistical parameters. The tensile strength of silane‐treated basalt fiber is higher than the tensile strength of the untreated basalt fiber; this behavior may be due to flaw healing effect on the defected fiber surfaces. The IFSS results on the composites confirm that the interaction between the fiber modified with coupling agents and the bio‐based epoxy resin was much stronger than that with the untreated basalt fiber. POLYM. COMPOS., 36:1205–1212, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
Three kinds of surface treatment, that is, the alkalization (5% w/v NaOH aqueous solution), the deposition of diglycidyl ether of bisphenol A (DGEBA) from toluene solution (1% w/v DGEBA), and the alkalization combined with the deposition of DGEBA (5% w/v NaOH/1% w/v DGEBA) were applied to modify interfacial bonding and to enhance mechanical properties of pineapple leaf fiber (PALF) reinforced epoxy composites. The fiber strength and strain were measured by single fiber test and the fiber strength variation was assessed using Weibull modulus. Furthermore, a fragmentation test was used to quantify the interfacial adhesion of PALF‐epoxy composite. It was verified that the interfacial shear strength of modified PALFs was substantially higher than that of untreated PALF by almost 2–2.7 times because of the greater interaction between the PALFs and epoxy resin matrix. The strongest interfacial adhesion was obtained from the fibers that had been received the alkalization combined with DGEBA deposition. Moreover, the flexural and impact properties of unidirectional PALF‐epoxy composites were greatly enhanced when reinforced with the modified PALFs due to an improvement in interfacial adhesion, particularly in the synergetic use of 5% NaOH and 5% NaOH/1% DGEBA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Regenerated cellulose fibers spun from straw pulp using the N-methylmorpholine N-oxide (NMMO) process were evaluated as a reinforcement for low-density polyethylene (LDPE). Surface fibrillation was carried out by a mechanical treatment to improve interfacial adhesion. Surface fibrillation resulted in a gradual change in surface topography, as detected by SEM. Long and numerous twisted fibrils were observed on the surface of the treated fibers. The fiber perimeters, determined by the Wilhelmy plate method, increased with an extended degree of fibrillation, while the strength of the fiber was not affected by the surface treatment. Model composites were prepared by embedding untreated and surface-fibrillated single fibers into an LDPE matrix, and the single fiber fragmentation (SEF) test was carried out to determine the critical fiber length. The interfacial shear strength (τ) was then calculated by applying a modified form of the Kelly-Tyson equation. It was found that the interfacial shear strength increased significantly as a result of surface fibrillation. The proposed mechanism for the improvement of interfacial adhesion is a mechanical anchoring between the matrix and the fiber.  相似文献   

13.
采用自制的专用处理剂处理聚对苯撑苯并双恶唑(PBO)纤维,研究了PBO纤维增强环氧树脂(EP)(EP/PBO)复合材料的配方体系与制备工艺参数.研究表明,采用EP与4,4-二胺基二苯甲烷(DDS)混合制备的复合材料的剪切强度最高.控制预浸胶带的含胶量为35%~37%,在适宜的缠绕工艺参数与固化条件下,制备的EP/PBO复合材料的NOL环剪切强度达26.28~29.32 MPa.  相似文献   

14.
Plasma‐copolymerized functional coatings of acrylic acid and 1,7‐octadiene were deposited onto high strength, high modulus, poly‐p‐phenylene benzobisoxazole (PBO) fibers. X‐ray photoelectron spectroscopy (XPS) with trifluoroethanol derivatization confirmed that the PBO fibers were covered completely with the plasma copolymer and that the coating contained a quantitative concentration of carboxylic acid groups. Microdebond single filament adhesion and interlaminar shear strength (ILSS) tests were used to evaluate the interfacial strength of epoxy resin composites containing these functionalized PBO fibers. Both the interfacial shear strength (IFSS) obtained from single filament tests, and the ILSS of high volume fraction composites were a function of the surface functionality of the fibers so that there was a good correlation between ILSS and IFSS data. The tensile strengths of single fibers with or without coating were comparable, demonstrating that the fiber surface was not damaged in the plasma‐coating procedure. Indeed, the statistical analysis showed that Weibull modulus was increased. Therefore, plasma‐polymerized coatings can be used to control the interfacial bond between PBO fibers and matrix resins and act as a protective size for preserving the mechanical properties of the fibers. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
The effects of alkalization surface treatment on hemp fiber properties and the properties of hemp fiber–reinforced polyester composites have been studied. Hemp fibers were exposed to 1, 5, and 10% sodium hydroxide (NaOH) solutions. The tensile properties and interfacial shear strength of all alkalized fibers were found to lie within the range of nonalkalized fibers. Laminates were made of alkalized fibers with unsaturated polyester resin, using hand lay‐up and compression moulding. Alkalization of fibers at low concentrations of 1 and 5% resulted in improvements in tensile and fatigue properties of composites made from these fibers, but no such improvements were observed for 10% alkalized fiber composites. The improvements were attributed to improvement in fiber/matrix bonding after this treatment, which was also confirmed by scanning electron microscopy images. No improvement in impact damage tolerance was observed for any of these three alkalized fiber composites. Immersion in distilled water reduced water absorption compared with nonalkalized fiber composites; however, the tensile properties in water were similar to those for nonalkalized fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
An ultrasonic irradiation technique is used during the process of fabricating aramid fiber–epoxy resin reinforced composites to improve the interfacial adhesion performance. Under the ultrasonic treatment, the change of the resin viscosity is studied. The results of a microbond test show obvious improvement in the interfacial shear strength after ultrasonic treatment. The mechanical properties of the composites, such as the interlaminar shear strength and tensile strength, are measured. Combined with the SEM results, these show it is the mechanical properties that are improved and the fracture modes are varied from the interface between the fibers and resin to the fibrillation of fibers and resin. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2764–2768, 2001  相似文献   

17.
An important aspect in development of multi‐scale reinforced composites is their mass production which can be easily realized. In this article, the sepiolites (Si12O30Mg8(OH)4(OH2)4·8H2O) are directly deposited onto the surface of JH‐T800 carbon fibers for the first time with no need for removal of the commercial sizing agent. The sepiolites adhering to the carbon fibers are uniformly distributed with random orientation, and participated in the formation of high modulus intermediate layer encompassing the carbon fiber. After the deposition of sepiolites, the interfacial shear strengths (IFSS) of the carbon fiber/epoxy composites are significantly improved as shown in single‐fiber composite fragmentation tests. Compared to the commercial carbon fiber composites, the sepiolite‐deposited fiber composites also exhibit obvious improvement in the interlaminar shear strength and flexural strength. As a new kind of multi‐scale reinforcement with industrial application value, the sepiolite‐deposited carbon fibers can further raise the level of mechanical properties of the existing carbon fiber reinforced composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43955.  相似文献   

18.
《Polymer Composites》2017,38(1):27-31
A novel method was developed for grafting poly(acrylamide) (PAAM) on to the carbon fiber (CF) surface via reversible addition–fragmentation chain transfer (RAFT) polymerization to improve the interaction between carbon fibers and epoxy matrix in the composites system. The carbon fibers were first treated with nitric acid and γ‐methacryloxypropyltrimethoxy silane (KH570). Then, the PAAM was grafting onto the carbon fiber surface via RAFT polymerization. The resulted carbon fibers functionalized with PAAM (CF‐PAAM) were characterized by FTIR, XPS, and TGA, and the results revealed that CF‐PAAM were synthesized successfully. The introduction of PAAM chains could make the fiber surface rougher and introduce a large numbers of –NH2 groups, which can improve the interfacial adhesion in the composites. The microbond test results showed that the interfacial shear strength (IFSS) of the composites reinforced by CF‐PAAM has been enhanced about 107%. POLYM. COMPOS., 38:27–31, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Good wetting of reinforced fiber by resin was a main factor in the improvement of the interface adhesion of their composites. Ultrasound with a frequency of 20 kHz was used to improve the wettability between aramid fibers and epoxy resin during the winding process of the composites. The effects of ultrasound on the viscosity and surface tension of epoxy resin and on the surface characteristics of aramid fibers were investigated. The wettability of aramid fibers and treated epoxy resin under different conditions and of aramid fibers and epoxy resin under ultrasonic online treatment were compared. The results indicated that the main action of ultrasound was to force epoxy resin to impregnate aramid fibers, in addition to the influence of ultrasound on the properties of epoxy resin and aramid fibers. The results of microdebond testing showed that the interfacial shear strength (IFSS) of aramid/epoxy composites could be 26% higher than that of untreated composites because of the improved wettability between aramid fibers and epoxy resin subjected to ultrasonic online treatment. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

20.
The microbond technique is a modification of the single-fiber pullout test for measuring interfacial shear strength. Briefly, a cured microdroplet of material is debonded in shear from a single fiber. Ultra-high modulus polyethylene (Spectra) fibers and aramid fibers (Kevlar) were treated using a radio frequency plasma in order to increase the interfacial bond between the fibers and an epoxy resin. The treated fiber surface was subsequently analyzed by X-ray photoelectron spectroscopy (XPS). Plasma treatment resulted in an increased concentration of oxygen containing functionalities on the fiber surface. The interfacial shear strength as determined by the microbond test increased by 118% for the Spectra fibers and by 45% for the Kevlar fibers with the same epoxy resin. Scanning electron microscopy indicated little change of the surface topography of either fiber following plasma treatment. Effects of friction and surface composition of the plasma-treated fibers is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号