首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nine formulations were selected for evaluating the effect of different curing methods on pH and alkalinity or acidity of various structural wood adhesives. These included four phenol–formaldehyde (PF) resins with high pH, one phenol–resorcinol–formaldehyde (PRF) resin with intermediate pH, two melamine–urea–formaldehyde (MUF) resins, and two melamine–formaldehyde (MF) resins with low pH. The four curing methods used in the study were: (1) curing at 102–105°C for 1 h (based on CSA O112.6‐1977), (2) four‐hour curing at 66°C followed by 1‐hour curing at 150°C (based on ASTM D1583‐01), (3) curing at room temperature overnight (based on ASTM D 1583‐01), and (4) cured adhesive squeezed out from glue lines of bonded shear block samples. The effect of the different methods on pH and alkalinity/acidity of the cured adhesive depended strongly on the individual adhesives. For the PF, the alkalinity was different for the different formulations in the liquid form, while in the cured form, the difference in the alkalinity depended on the curing method used. The MF and the MUF were the adhesives most affected by the method used. In particular, the MUF showed much higher cured film pH values when cured by method 2 compared to the other three methods, while both the cured MF and MUF exhibited quite variable acidity values when cured with the different methods. The PRF showed reasonably uniform cured film pH but varying acidity values when cured with the different methods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Colloidal particles formation followed by their clustering have been shown to be the normal way of ageing of aminoplastic resins, namely urea–formaldehyde (UF) resins, melamine–formaldehyde (MF) resins, and melamine–urea–formaldehyde (MUF) resins. Ageing or further advancement of the resin by other means such as longer condensation times causes whitening of the resin. This is a macroscopic indication of both the formation of colloidal particles and of their clustering. It eventually progresses to resins, which are mostly in colloidal, clustered state, followed much later on by a supercluster formation starting to involve the whole resin. The initial, filament‐like colloidal aggregates formed by UF resins have different appearance than the globular ones formed by MF resins. MUF resins present a short rod‐like appearance hybrid between the two. GPC has been shown to detect the existence of colloidal superaggregates in a UF resin, while smaller aggregates might not be detected at all. The star‐like structures visible in the colloidal globules of MF resins are likely to be light interference patterns of the early colloidal structures in the resins. These star‐like interference patterns become more complex with resin ageing or advancement due to the advancement of the resin to more complex aggregates, to eventually reach the stage in which filament‐like and rod‐like structures start to appear. The next step is formation of globular masses that are representative of the true start of physical gelation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1406–1412, 2006  相似文献   

3.
Lignocellulosic substrates such as wood have been found to have a marked modifying influence on both lower‐temperature and higher‐temperature zones of TTT and CHT diagrams during hardening of formaldehyde‐based polycondensates. While the modifying influence of the substrate has been described, the modifying influence of some of the most important manufacturing parameters of the resins on the CHT diagram, not having been previously investigated, are explored here and clear trends are shown. In the case of melamine–urea–formaldehyde (MUF) resins for wood adhesives, the molar ratio (M+U):F appear to be the dominant parameter influencing the relative position of gel and vitrification curves in relation to each other. The ratio of melamine to urea does not appear to have any effect on the relative position of the curve, lacking any clear trend, at least at the higher (M+U) molar ratio of 1:1.9 used for this series of resins. In the case presented for the first time, the influence of resin manufacturing parameters on CHT curing diagrams was studied in combination with the modifications introduced by the substrate. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2821–2825, 2001  相似文献   

4.
1H‐15N‐13C correlation NMR spectroscopy techniques developed to identify and characterize co‐polymer fragments in melamine‐urea‐formaldehyde (MUF) and phenol‐urea‐formaldehyde (PUF) model systems have been applied to industrially prepared MUF, PUF, and phenol‐melamine‐formaldehyde (PMF) resins. The NMR data confirm that co‐polymers form in a commercially prepared MUF resin manufactured by Momentive Specialty Chemicals Pty. Ltd. Spectra from PUF model reactions were compared with those from a PUF resin and it was determined that PUF co‐polymers did not form in the resin prepared using typical temperature and pH. Finally, NMR spectroscopy was used to identify and characterize PMF co‐polymer bonds in a phenol‐melamine‐urea‐formaldehyde (PMUF) resin prepared using a procedure from Momentive Specialty Chemicals Pty. Ltd. With these NMR techniques in hand, it is now possible to relate co‐polymer structures to properties of commercial thermosets. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Colloidal particle formation followed by their clustering has been shown to be the normal way of ageing of aminoplastic resins, in particular melamine–urea–formaldehyde (MUF) resins. Ageing (or further advancement of the resin by other means such as longer condensation times) causes whitening of the resin. This is a macroscopic indication both of the formation of colloidal particles and of their clustering. Some clustering appears rather early in this process, even when the great majority of the resin does visually appear to be in colloidal state, being transparent. However, it eventually progresses to resins which are mostly in colloidal, clustered state, followed much later by a supercluster formation starting to involve the whole resin. There appears to be clear correspondence between molecular mass increases as obtained by gel permeation chromatography (GPC), low‐angle laser light scattering (LALLS) analysis, and observation by polarizing optical microscopy. LALLS, however, appears to indicate the dimensions of the colloidal particles themselves when the level of colloidal aggregation is rather low, but it indicates the dimensions of the clusters once these are mostly aggregated. The smaller visible colloidal particles, already aggregates, were found by polarizing optical microscopy to be of a mostly elongated, rodlike shape, the length of which was shown to grow much further than their width with resin advancement and ageing. As their dimensions indicate, these are already clusters; this implies that the mainly linear increase of the polycondensate chains influences also the simpler colloidal clusters' growth direction, possibly explaining the resins' lack of tridimensional hardening while still in storage. It also explains why molecules such as free urea and acetals, by disrupting these colloidal aggregation mechanisms, allow both a much longer shelf life of the resin and its better performance in hardening. These findings explained the considerable difference in the behavior and performance of different MUF resin formulations. The ageing of the MUF resins of different preparation procedures appeared then to proceed from (1) clear resin (molecular colloidal aggregation) to (2) superclusters of a whitened, heavily thixotropic resin, which is the beginning of physical gelation to (3) liquid/cluster separation, which is the terminal stage of physical gelation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2690–2699, 2004  相似文献   

6.
Kinetic evidence in thermomechanical analysis experiments and carbon‐13 nuclear magnetic resonance spectroscopy (13C NMR) evidence indicates that the strength of a joint bonded with UF (urea–formaldehyde)/polymeric 4,4'‐diphenylmethane diisocyanate (pMDI) glue mixes is improved by coreaction of the methylol groups of UF resins with pMDI to form a certain number of methylene cross‐links. The formation of these methylene cross‐links is predominant, rather than formation of urethane bridges which still appear to form but which are in great minority. This reaction occurs in presence of water and under the predominantly acid hardening conditions, which is characteristic of aminoplastic resins (thus, in presence of a hardener). Coreaction occurs to a much lesser extent under alkaline conditions (hence, without UF resins hardeners). The predominant reaction is then different in UF/pMDI adhesive systems than that observed in phenol‐formaldehyde (PF)/pMDI adhesive systems. The same reaction observed for UF/pMDI system at higher temperatures has also been observed in PF/pMDI systems, but only at lower temperatures. The water introduced in the UF/pMDI mix by addition of the UF resin solution has been shown not to react with pMDI to an extent such as to contribute much, if at all, to the increase in strength of the hardened adhesive. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3681–3688, 2002  相似文献   

7.
The varying polymer structures of wood adhesive‐type urea–formaldehyde resins resulting from different formaldehyde/first urea (F/U1) mole ratios used in the first step of resin manufacture were investigated using 13C. As the F/U1 mole ratio decreased progressively from 2.40 to 2.10 and to 1.80, the viscosity increase due to polymerization during resin synthesis became faster and resulted in decreasing side‐chain branches and increasing free urea amide groups in the resin structure. The resultant UF resins, with the second urea added to an overall F/(U1 + U2) of 1.15, showed viscosity decreases when heated with stirring or allowed to stand at room temperature that were also characteristic with the F/U1 mole ratios used in resin synthesis. The formaldehyde emission levels of particleboards bonded with the freshly made UF resins showed relatively small but similarly characteristic variations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2800–2814, 2001  相似文献   

8.
Low‐condensation phenol‐formaldehyde (PF) resins coreacted under alkaline conditions with up to 42% molar urea on phenol during resin preparation yielded PUF resins capable of faster hardening times than equivalent pure PF resins prepared under identical conditions and presented better performance than the latter. The water resistance of the PUF resins prepared seemed comparable to pure PF resins when used as adhesives for wood particleboard. Part of the urea was found by 13C‐NMR to be copolymerized to yield the alkaline PUF resin; whereas, especially at the higher levels of urea addition, unreacted urea was still present in the resin. Increase of the initial formaldehyde to phenol molar ratio decreased considerably the proportion of unreacted urea and increased the proportion of PUF resin. A coreaction scheme of phenolic and aminoplastic methylol groups with reactive phenol and urea sites based on previous model compounds work has been proposed, copolymerized urea functioning as a prebranching molecule in the forming, hardened resin network. The PUF resins prepared were capable of further noticeable curing acceleration by addition of ester accelerators; namely, glycerol triacetate (triacetin), to reach gel times as fast as those characteristic of catalyzed aminoplastic resins, but at wet strength values characteristic of exterior PF resins. Synergy between the relative amounts of copolymerized urea and ester accelerator was very noticeable at the lower levels of the two parameters, but this effect decreased in intensity toward the higher percentages of urea and triacetin. 13C‐NMR assignements of the relevant peaks of the PUF resins are reported and compared with what has been reported in the literature for mixed, coreacted model compounds and pure PF and urea‐formaldehyde (UF) resins. The relative performance of the different PUF resins prepared was checked under different conditions by thermomechanical analysis (TMA) and by preparation of wood particleboard, and the capability of the accelerated PUF resins to achieve press times as fast as those of aminoplastic (UF and others) resins was confirmed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 359–378, 1999  相似文献   

9.
A modified urea–formaldehyde resin was synthesized by the condensation of urea and formaldehyde in the presence of varying proportions of casein up to 25% (w/w) of urea under alkaline conditions. All the prepared resins were characterized by free‐formaldehyde content, viscosity measurements, and number‐average molecular weight determination by vapor pressure osmometry and IR spectroscopy. Their curing kinetics were studied isothermally and by differential scanning calorimetry on dynamic runs. The resin samples were cured isothermally at 60, 80, and 100°C using ammonium chloride and hydroxylamine hydrochloride as curing agents. The isothermal curing study was also performed with hexamine at 120°C. Cured resins were characterized by IR and thermogravimetric analysis. The resin samples were employed for the fabrication of glass fiber and jute fiber reinforced composites by maintaining 2 : 3 and 3 : 2 proportions of resin/reinforcement, respectively. The prepared composites were tested for their mechanical properties and resistance toward various chemicals. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 531–537, 2005  相似文献   

10.
Various salts derived from melamine and organic acids were prepared and used as melamine substitutes for melamine urea formaldehyde (MUF) resins. The synthesis of these melamine salts and a detailed characterization of their stoichiometry are described. All salts form 1 : 1 or 1 : 2 stoichiometries in a homogeneous reaction. They crystallize during cooling of the hot and diluted reaction mixture. Both 13C–NMR and 15N–NMR data are reported and point toward the formation of real ionic structures. Most salts have higher water solubility than that of pure melamine and are tested for their ability to substitute melamine in MUF resins. The mechanical and chemical properties of plywood panels made up of traditional MUF resins and mixtures of UF resins with melamine salts are investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1654–1661, 2001  相似文献   

11.
Typical particleboard wood‐adhesive urea–formaldehyde (UF) resins, synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.80, 2.10, and 2.40 and the second urea added to an overall F/U ratio of 1.15, in weak alkaline pH, were allowed to stand at room temperature over a period of 50 days. 13C‐NMR of time samples taken over the storage period showed gradual migration of hydroxymethyl groups from the polymeric first‐urea components to the monomeric second‐urea components and also an advancing degree of polymerization of resins by forming methylene and methylene ether groups involving the second urea. These phenomena that varied with the F/U1 mol ratios used in the resin syntheses due to the varying polymer branching structures resulted in the first step of resin synthesis. Varying viscosity decreases and increases of the resins also occurred. Due to these chemical and physical changes, the particleboards that bonded with the sampled resins showed varying bond strength and formaldehyde‐emission values, indicating process optimizations possible to improve bonding and formaldehyde‐emission performances. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1155–1169, 2001  相似文献   

12.
The addition of melamine acetate salts to an adhesive glue mix can allow the use of melamine–urea–formaldehyde (MUF) resins of lower melamine contents (rather than just urea–formaldehyde resins) and lower total amounts of melamine. Performances can be obtained that are characteristic of the top‐of‐the‐line, generally higher melamine content MUF adhesive resins for the preparation of wood particleboard panels. Improvements in the panel internal‐bond strength of greater than 30% can be obtained by the addition of melamine acetate salts to top‐of‐the‐line MUF resins. The approach to the concept of increased melamine solubility with a melamine salt is compatible with the approach of increasing melamine solubility with solvents such as acetals (e.g., methylal). However, the synergy advantage of using the two approaches jointly is not very marked. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 287–292, 2003  相似文献   

13.
Phenol‐urea‐formaldehyde (PUF) resins were synthesized by reacting mixture of methylolureas (MMU), phenol, and formaldehyde. The structure of PUF cocondensed resins at different stages of reaction were analyzed by liquid 13C nuclear magnetic resonance (NMR) spectroscopy. The liquid 13C‐NMR analysis indicated that methylolureas had the dominant content in MMU with the reaction between urea and formaldehyde under the alkaline condition. The PUF cocondensed resins had no free formaldehyde. methylolureas were well incorporated into the cocondensed resins by reacting with phenolic units to form cocondensed methylene bridges. The second formaldehyde influenced the further reaction and the structure of the PUF resins. The resins with the prepared method of PUFB possessed relatively high degree of polymerization and low proportion of unreacted methylol groups. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Urea formaldehyde, melamine formaldehyde, and melamine urea formaldehyde (MUF) are important industrial amino resins that find application in numerous diverse areas, most notably in the bonding of wood products. To understand the physical properties of these amino resins and, hence, optimize their performance, a knowledge of their chemical structure is necessary. This article reports the use of NMR spectroscopy to acquire this information in the solid and liquid states. 13C‐NMR experiments, supported and augmented by 1H‐NMR and 15N‐NMR results, showed that the two stages of resin synthesis, methylolation followed by condensation, occurred in each type of resin. However, in the various MUF samples analyzed, the second step appeared to be predominantly the self‐condensation of melamine and urea rather than the cocondensation of melamine and urea. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3504–3512, 2004  相似文献   

15.
A particleboard adhesive‐type urea–formaldehyde (UF) resin was made at a formaldehyde ratio of 2.10 and added with a second urea at low temperature to the typical final formaldehyde/urea ratio of 1.15. Time samples taken during heat treatments of the resin sample up to 70°C over a period of 250 min showed decreases in Type II/IIi hydroxymethyl group content, accompanied with decreases in resin sample viscosity and increases in formaldehyde emission of bonded particleboards. The results indicate that various hydroxymethyl groups of polymeric UF resin components migrate to the second urea to form Type I hydroxymethyl groups. Time samples taken during the room‐temperature storage of the resin sample over a period of 1 month behaved similarly initially, but in the later stage, some polymerization progressed, shown by increases in viscosity and methylene and methylene–ether group contents. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1243–1254, 2000  相似文献   

16.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

17.
Wide‐scope mathematical relationships have been established between the 13C‐NMR of liquid polycondensation resins, such as urea–formaldehyde and phenol–formaldehyde resins, and the strength of the network formed by the same resin when hardened under well‐defined conditions, the thermomechanical analysis deflection, the number average molecular mass and the number of degrees of freedom of the average polymer segment between crosslinking nodes in the hardened resin network, the resin network glass transition temperature, its solid‐phase 13C‐NMR proton‐rotating frame spin‐lattice relaxation time, and the homogeneous and heterogeneous polymer segment/polymer segment interfacial interaction energy calculated by molecular mechanics. These mathematical relationships allow the calculation of any of these parameters from any of the techniques listed, provided that all of the systems are used under well‐defined conditions. Under different conditions, the values of the numerical coefficients involved change; and, whereas the equations are still valid, a different set of coefficients needs to be recalculated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1703–1709, 1999  相似文献   

18.
The reaction of hardening of melamine–urea–formaldehyde (MUF) adhesive resins in the presence of wood and cellulose was confirmed to have a lower energy of activation than the MUF adhesive alone, both in the presence or absence of ammonium chloride hardener, thus both in mildly acid and mildly alkaline environments. DSC exotherms showed that during hardening of melamine to melamine, melamine to urea, and urea to urea crosslinks through methylene bridges occur. Only the earliest reaction, mainly melamine to melamine crosslinking, presents a decrease in energy of activation which can be assigned to catalytic activation by the cellulosic substrate. The other types of crosslinking reactions (i) appear not to occur due to the more favorable and rapid melamine to melamine reaction which precedes them at lower temperature or (ii) do not present catalytic activation by the substrate but rather hindrance by it or (iii) variation of their energy of activation appears to be due to increased diffusion hindrance by the substrate caused by the increasing molecular weight of the resin while hardening. This because the Kissinger equation plots of the resin alone are in the main linear, for all the exotherms, indicating that in hardening of the resin alone diffusion problems appear to be limited. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
改性三聚氰胺-尿素-甲醛共缩聚树脂胶粘剂的合成   总被引:1,自引:0,他引:1  
通过三聚氰胺-尿素-甲醛(MUF)共缩聚树脂胶粘剂的合成,探讨了三聚氰胺的用量对该MUF树脂耐水性能的影响及其规律。实验结果表明,当w(三聚氰胺)=43%~65%时,该MUF树脂的湿强度从0.93 MPa增加到2.74 MPa,耐沸水性明显提高;但是,当w(三聚氰胺)>65%时,该MUF树脂的湿强度增长极其缓慢,其耐沸水性提高并不明显;通过引入复合改性剂和适量的水,可使该MUF树脂的游离甲醛含量降低50%、成本降低10%~15%、固含量基本不变、胶合强度和耐沸水性均有所提高且适用期良好。  相似文献   

20.
Phenol–urea–formaldehyde (PUF) resins were synthesized by a two‐step polymerization process. The first step was the synthesis of 2,4,6‐trimethylolphenol (TMeP) from phenol and formaldehyde, under alkaline conditions. In the second step PUF resins were synthesized by the reaction of TMeP with urea, under acidic and alkaline conditions. The influence of temperature on the synthesis of TMeP was investigated. The molar ratio between TMeP and urea was varied to study the composition effect on the second step of the PUF synthesis and final product properties. Synthesis of TMeP and PUF resins were monitored by inline FTIR‐ATR system. Analytical methods, such as differential scanning calorimetry, nuclear magnetic resonance, thermogravimetric analysis, and infrared spectroscopy were used for characterization of TMeP and PUF resins. Obtained PUF resins were cured and tested on flexural strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号