首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of the Taylor‐Couette flow apparatus as a heat sterilizer is numerically investigated. The destruction of Clostridium botulinum and thiamine (vitamin B1) was selected as model reaction. When Taylor vortices were formed in the annular space, the heat transfer significantly enhanced as compared to the case without vortex flow. As a result, the equivalent lethality calculated from the temperature field increased, which is regarded as a quantum leap. Conversely, the improvement of heat transfer induced destruction of thiamine. These results suggest that there is a trade‐off relationship between the enhancement of heat transfer and the avoidance of thermal destruction of nutritional components. In conclusion, the Taylor‐Couette flow sterilizer has the potential for process intensification in heat sterilization processes.  相似文献   

2.
The shaft bushings in many machines form a Taylor‐Couette system with a thin clearance. The flow in such a clearance was studied in this paper by means of CFD simulation. Two different gap width ratios have been chosen to investigate the flow from laminar to turbulent range. Based on the simulation results a critical gap width ratio is determined in the turbulent regime, which is of importance to the transition of a turbulent flow with Taylor vortex in a turbulent flow without Taylor vortex.  相似文献   

3.
4.
5.
In this study, the flow dynamics of a Taylor–Couette flow with an axial distribution of temperature was experimentally investigated. The flow can be classified into three patterns based on the balance between the centrifugal force and the buoyancy. If the buoyancy is dominant, global heat convection is observed instead of Taylor vortices (Case I). When the buoyancy is comparable to the centrifugal force, the Taylor vortices and global heat convection appear alternately (Case II). If the centrifugal force is sufficiently high to suppress the buoyancy, stable Taylor vortices are observed (Case III). The characteristics of the mixing/diffusion are investigated by conducting a decolorization experiment on a passive tracer. In Case II, the tracer is rapidly decolorized in the presence of the global heat convection instead of the Taylor vortices. This result implies that the interaction between the centrifugal force and the buoyancy would induce an anomalous transport. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1075–1082, 2018  相似文献   

6.
Application of liquid‐liquid extraction is on a steady rise. Although there are considerable designs of extraction devices, equipment design and optimization is still on the research agenda. Utilization in the biorefinery industry or metallurgy requires robust technologies and equipment. The simple design and stable operation performance of the Taylor‐Couette disc contactor suffices the technical needs for these harsh operation conditions. The effect of different rotor disc diameter on the dispersed phase holdup, axial dispersion, and droplet size was investigated. It was shown that with smaller rotor disc diameter stable operation is still feasible but higher axial backmixing has to be expected.  相似文献   

7.
Two‐dimensional simulations of flow instability at the interface of a three‐layer, density‐matched, viscosity‐stratified Poiseuille flow are performed using a front‐tracking/finite difference method. This is an extension of the study for the stability of two‐layer viscosity‐stratified flow of Cao et al., Int. J. Multiphase Flow, 30 , 1485‐1508 (2004). We present results for large‐amplitude non‐linear evolution of the interface for varying viscosity ratio m, Weber number We, and phase difference between the perturbations of the two interfaces. Strong non‐linear behaviour is observed for relatively large initial perturbation amplitude. The higher viscosity fluid is drawn out as a finger that penetrates into the lower viscosity layer. The finger originates at the crest of the perturbation at the interface. The simulated interface shape compares well with previously reported experiments. Increasing interfacial tension retards the growth rate of the interface as expected, whereas increasing the viscosity ratio enhances it. The sinuous instability appears to evolve faster than the varicose one. For certain flow parameters the high‐viscosity finger displays a bulbous tip, which is also seen in our previously conducted experiments and two‐layer results, although it is less pronounced. The low‐viscosity intruding finger does not display this curious bulbous tip. Drop formation is precluded by the two‐dimensional nature of the calculations.  相似文献   

8.
A simulation of the hydrodynamic behavior of an aerosol‐counter flow reactor was conducted using an Euler‐Lagrange method. The simulation results were then verified with experiments. The process simulated was a separation process required during the production of biodiesel (fatty acid methyl ester). In this process, the liquid ester/glycerol phases are continuously injected through a hollow cone nozzle with an overpressure of 106 Pa into the reactor, operated at 15000 Pa. The liquid is atomized because of the pressure drop and a liquid particle spray is generated with an inlet velocity of 44.72 m/s. Water vapor of temperature 333 K is injected tangentially through two side, gas inlets with an inlet velocity of 1.2 m/s. Excess methanol is subjected to a mass transfer from the liquid phase into the gas phase, which is withdrawn through the head of the reactor and condensed in an external condenser unit. The stripping of the methanol off the liquid leads to a sharp interface between the glycerol and the ester phase, which can then be easily separated by gravity or pumping. The gas velocity field, pressure field and the liquid particle trajectories were calculated successfully. Simulated dwell time distribution curves were derived and analyzed with the open‐open vessel dispersion model. Experimental dwell time distribution curves were measured, analyzed with the open‐open vessel dispersion model, and compared with the simulated curves. A good consistency between simulated and measured Bodenstein numbers was achieved, but 25 % of the simulated particles exited at the reactor's head, contrary to experimental observations. The difference between simulated and measured dwell times was within one order of magnitude.  相似文献   

9.
J. Peng  Z. Y. Zhang  H. T. Niu 《Fuel Cells》2012,12(6):1009-1018
A three‐dimensional, two‐phase, multi‐component mixture model in conjunction with a finite‐volume‐based computational fluid dynamics (CFD) technique is applied to simulate the operation of membraneless fuel cell with Y‐shape channel. Hydrogen peroxide is employed both as fuel and oxidant, which are dissolved in diluted sodium hydroxide and sulfuric acid solutions, respectively. Almost all transport phenomena occurring in the fuel cell such as fluid flows, mass transport, electrochemical kinetics, and charge transport are accounted in this model. The oxygen O2 gas, which is a product on the anode electrode, is assumed to be insoluble. The presence of gas phase acts to prevent the processes of reactant supply and product removal. Thus, the cell performance is hindered, while it is operated at the normal current density situation. On the other hand, the capillary action is found to enhance the electrolyte transport in the anode porous electrode, which may slightly improve the cell performance at the high‐current density situation. Besides, a secondary vortex flow is induced due to the transportation of the gas phase, which drifts from the bottom to the top of the channel. The mixing zone is then inclined, which may result in serious fuel crossing phenomenon.  相似文献   

10.
11.
Non‐Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear‐thinning rheology in a Taylor‐Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear‐thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher‐order wavy instability, and is associated with an increase in the axial wavelength. Strong shear‐thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear‐thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor.  相似文献   

12.
A DEM‐CFD coupling for the simulation of gas‐solid flows was successfully implemented and simulations were performed for the application to industrial‐scale pneumatic conveying. Therefore, all particle collisions and phase interactions were considered and porosity determination was optimized. The aim of this work is to show the applicability of the presented simulation model to the different regimes of pneumatic conveying systems. As a first test case a dense vertical pneumatic conveying system was chosen and an individual plug was investigated in detail. Variations of the conveying air velocity were also considered. As a second test case dilute conveying in a horizontal‐to‐vertical pipe bend was simulated. The occurrence of roping and the reduction of particle velocity is of high interest for the design of specific pneumatic systems. It is shown that both regimes can be captured reasonably well and the results are rich in details.  相似文献   

13.
14.
15.
Multi‐dimensional multi‐component two‐phase flow modeling of solid propellant combustion in weapons is the new trend of the interior ballistics codes. Most of these codes are designated to large caliber guns and rockets simulation. Only a small number of investigations on small‐caliber gun have been recently reported, where the need of high‐performance and reliable small‐caliber guns stimulated significant interest in developing techniques to understand the phenomenology of small‐caliber ballistics and predict the behavior and the performance of this type of weapons. In this paper, a numerical model describing the combustion of solid propellant in small‐caliber gun is presented. The governing equations with customize parameters were derived in the form of coupled, non‐linear axisymmetric partial differential equations. They were further implemented into the CFD code Fluent. A numerical test showed that Fluent is able to handle correctly the interaction between the moving projectile and the combustion gases in the chamber. The interior ballistics curves along with the performance of small‐caliber gun 5.56 mm were adequately predicted. The numerical results were in agreement with the experimental results.  相似文献   

16.
The flow distribution through a plate‐fin heat exchanger is studied by using a computational fluid dynamics (CFD) code, FLUENT. The flow distribution through any heat exchanger affects its performance. In designing a heat exchanger, it is assumed that the fluid is uniformly distributed through the heat exchanger core. In practice, however, it is impossible to distribute fluid uniformly, because of an improper inlet configuration, imperfect design, and a complex heat transfer process. The CFD simulation of the flow distribution in the header of a conventional plate‐fin heat exchanger is presented. It is found that the flow maldistribution is very serious in the y‐direction of the header. A modified header is proposed and simulated using CFD. The modified header configuration has a more uniform flow distribution than the conventional header configuration. Hence, the efficiency of the modified heat exchanger is seen to be higher than that of the conventional heat exchanger.  相似文献   

17.
The effects of the conditions of the ignition system in the propellant chamber of a gun system using a granular solid propellant are numerically investigated with respect to ignition performance criteria such as the differential pressure generation between the breech and the projectile base. Simulations, in which the length of the primer and the igniter mass are varied, are performed using a solid/gas two‐phase fluid dynamics code for three‐dimensional calculation of gas flow and discrete solid propellant particles. This code simulates the igniter combustion in the primer, the movement of burning solid propellant grains, and the formation of pressure gradients inside the chamber in the ignition process. The differential pressures between the breech and the projectile base measured in experiments are well predicted by the simulations for various igniter conditions. In the process of igniting the solid propellant, the propellant grains are accelerated toward the projectile base by the igniter gas flows from the primer vents. Fixed‐particle simulation is also carried out in order to examine the effects of the movement of the solid propellant grains on the chamber pressure profile. The simulated results reveal that the movement of solid propellant grains causes differential pressure fluctuations, which depend on the discharge from the primer vents and the locations of these vents.  相似文献   

18.
A new gas‐around‐liquid spray nozzle (GLSN) was designed, and the two‐phase flow fluid field in this nozzle was simulated numerically. Flow characteristics under different structural parameters were obtained by changing the L/D ratio of the premixing chamber, incident angle, and inlet pressures. Increasing the L/D ratio and incident angle improved flow characteristics such as atomization flow, outlet velocity, and turbulence intensity. The nozzle performed optimally at an L/D ratio of 0.5 and incident angle of 60°. The atomization flow decreased with higher gas pressure and increased with higher liquid pressure. The outlet velocity mainly depended on the inlet gas pressure, not on the inlet liquid pressure. These results provide an indication for optimum structures and parameters of the GLSN.  相似文献   

19.
Microscale studies, which can provide basic information for meso‐ and macroscale studies, are essential for the realization of flow characteristics of a packed bed. In the present study, the effects of gas velocity, liquid velocity, liquid‐solid contact angle, and liquid viscosity on the flow behavior were parametrically investigated for gas‐liquid two‐phase flow around a spherical particle, using computational fluid dynamics (CFD) methodology in combination with the volume‐of‐fluid (VOF) model. The VOF model was first validated and proved to be in good agreement with the experimental data. The simulation results show that the film thickness decreases with increasing gas velocity. This trend is more obvious with increasing operating pressure. With increasing liquid velocity, the film thickness tends to be uniform on the particle surface. The flow regime can change from film flow to transition flow to bubble flow with increasing contact angle. In addition, only at relatively high values does the liquid viscosity affect the residence time of the liquid on the particle surface.  相似文献   

20.
M. Ni 《化学工程与技术》2009,32(10):1484-1493
A three‐dimensional computational fluid dynamics model was developed to study the performance of a planar solid oxide fuel cell (SOFC). The governing equations were solved with the finite volume method. The model was validated by comparing the simulation results with data from literature. Parametric simulations were performed to investigate the coupled heat/mass transfer and electrochemical reactions in a planar SOFC. Different from previous two‐dimensional studies the present three‐dimensional analyses revealed that the current density was higher at the center along the flow channel while lower under the interconnect ribs, due to slower diffusion of gas species under the ribs. The effects of inlet gas flow rate and electrode porosity on SOFC performance were examined as well. The analyses provide a better understanding of the working mechanisms of SOFCs. The model can serve as a useful tool for SOFC design optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号