首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization by using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized by using 1H‐NMR, infrared, and electronic absorption spectroscopy; differential scanning calorimetry; and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that, in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower as compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1822–1828, 2005  相似文献   

2.
Poly(aniline‐coo‐chloroaniline) salts were synthesized by chemical copolymerization of aniline with o‐chloroaniline using three different acids. The polymer salt samples were heat treated at four different temperatures (150, 200, 275 and 375 °C) and the thermal stability of the polymer salts were studied by conductivity, electron paramagnetic resonance (EPR), infrared (IR) and electronic absorption spectral measurements. The conductivity of the copolymers could be controlled in a broad range from 10 S cm−1 for homopolymer of aniline to 10−4 S cm−1 for those of o‐chloroaniline. No structural changes took place up to 200 °C and this was confirmed from EPR, IR and electronic absorption spectra. No definite correlation exists between conductivity and spin concentration. © 2000 Society of Chemical Industry  相似文献   

3.
The electrostatic charge dissipative (ESD) properties of conducting self‐doped and PTSA-doped copolymers of aniline (AA), o‐methoxyaniline (methoxy AA) and o‐ethoxyaniline (ethoxy AA) with 3‐aminobenzenesulfonic acid (3‐ABSA) blended with low‐density polyethylene (LDPE) were investigated in the presence of external dopant p‐toluenesulfonic acid (PTSA). Blending of copolymers with LDPE was carried out in a twin‐screw extruder by melt blending by loading 1.0 and 2.0 wt% of conducting copolymer in the LDPE matrix. The conductivity of the blown polymers blended with LDPE was in the range 10?12–10?6 S cm?1, showing their potential use as antistatic materials for the encapsulation of electronic equipment. The DC conductivity of all self‐doped homopolymers and PTSA‐doped copolymers was measured in the range 100–373 K. The room temperature conductivity (S cm?1) of self‐doped copolymers was: poly(3‐ABSA‐co‐AA), 7.73 × 10?4; poly(3‐ABSA‐co‐methoxy AA), 3.06 × 10?6; poly(3‐ABSA‐co‐ethoxy AA), 2.99 × 10?7; and of PTSA‐doped copolymers was: poly(3‐ABSA‐co‐AA), 4.34 × 10?2; poly(3‐ABSA‐co‐methoxy AA), 9.90 × 10?5; poly(3‐ABSA‐co‐ethoxy AA), 1.10 × 10?5. The observed conduction mechanism for all the samples could be explained in terms of Mott's variable range hopping model; however, ESD properties are dependent upon the electrical conductivity. The antistatic decay time is least for the PTSA‐doped poly(3‐ABSA‐co‐AA), which has maximum conductivity among all the samples. © 2013 Society of Chemical Industry  相似文献   

4.
In this study, we prepared a series of polymer–clay nanocomposite (PCN) materials that consisted of an emeraldine base of poly(o‐methoxyaniline) and layered montmorillonite. Organic o‐methoxyaniline monomers were first intercalated into the interlayer regions of organophilic clay hosts followed by a one‐step in situ oxidative polymerization. The as‐synthesized PCN materials were subsequently characterized by FTIR spectroscopy, wide‐angle powder X‐ray diffraction, and transmission electron microscopy. The molecular weights of PMA extracted from PCN materials and bulk PMA were determined by GPC with THF as eluant. Effects of the material composition on the thermal stability, flame resistance, electrical conductivity, and corrosion inhibition performance of PMA, along with a series of PCN materials in the form of fine powder and coating, were also studied by TGA, limiting oxygen index measurements, four‐point probe technique, and electrochemical corrosion measurements, respectively. Morphological images of as‐synthesized materials were also investigated by SEM. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1072–1080, 2003  相似文献   

5.
Blends made up of castor oil‐based polyurethane (PU) and poly(o‐methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV‐Vis‐NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV‐Vis‐NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10?3 S/cm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
A study on the thermal stability, thermodynamical parameters, especially relaxation transition temperature (Tg), and their change upon irreversible reactions (crosslinking, postpolymerization, decomposition, etc.) taking place on heating of the undoped homo‐ and copolymers of aniline and o‐methoxyaniline was performed by using differential scanning calorimetry. It was found that polyaniline and its oligomers might be responsible for the postpolymerization process observed on heating thermograms of the polymers in their emeraldine base form. It can be stated that the proceeding of this process appears to be a reason for the higher thermal stability of polyaniline when compared with poly(o‐methoxyaniline). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2729–2734, 2007  相似文献   

7.
Copolymers of aniline and toluidine were synthesized by oxidative chemical polymerization using different ratios of the monomers in the feed, and characterized by a number of techniques including UV–visible, IR, Raman, 1H NMR and EPR spectroscopies, as well as by thermogravimetric analysis and conductivity measurements. The properties of the copolymers are influenced by the amount of toluidine in the copolymer. Poly(o‐toluidine) and poly(m‐toluidine) are noticeably different in their solubility and conductivity. The copolymers show better solubilities than polyaniline but have lower conductivities. Differences in the properties of the salt and base forms of the copolymers are pointed out. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Copolymers (P(PDA/Ar)) of o‐phenylenediamine with aniline (Ar = ANi), 3,4‐ethylenedioxythiophene (Ar = EDOT) and 2,3,5,6‐tetrafluoroaniline (Ar = TFANi) were synthesized via polycondensation initiated by ammonium persulfate. The NH2 group content in the copolymers was determined by analyzing the 1H NMR spectra of the N‐acetylated copolymers. Copolymers crosslinked by viologen (1,1'‐disubstituted 4,4'‐bipyridinium dichloride) were obtained by reaction involving the reactive NH2 groups in the copolymers. The absorption wavelengths of solutions of the copolymers and the electrochemical oxidation and reduction potentials of cast films of the copolymers were affected by the electrical properties of the Ar unit. © 2016 Society of Chemical Industry  相似文献   

9.
Polyaniline (PAN), poly(o‐bromoaniline) (POBA), and poly(aniline‐co‐o‐bromoaniline) (PABA) were synthesized by oxidative coupling. These polymers are protonated by 10–20% methane sulfonic acid (MSA) and 1M HCl. The new polymer bases have greater solubility than that of PAN in common polar organic solvents; PAN–MSA was observed to be the most thermally stable of these polymers. POBA is associated with residual quinoid diimine units as illustrated in the IR and UV‐vis spectra, after reduction with hydrazine dihydrochloride. Both the doping agents cause a downward shift of the quinoid absorption in the IR spectra. MSA‐ and HCl‐doped PAN and PABA polymers exhibit a coil‐like conformation in DMSO, whereas only MSA‐doped PAN and PABA show an “expanded coil‐like” conformation in m‐cresol with a “free carrier tail” above 800 nm in their electronic spectra. XPS spectra indicated the presence of covalent bromine in the POBA and PABA polymers. Bromine retention was greater in the homopolymer as evidenced by the IR studies after aging at 350°C. Compared to HCl, MSA is found to be a more effective dopant, enhancing the conductivity of the copolymers by 102–103 times in magnitude. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2662–2669, 2002  相似文献   

10.
Poly(o‐amino benzyl amine), poly(m‐amino benzyl amine), and the copolymers with aniline were synthesized in 10?4M HCl by using ammonium persulfate as oxidizing agent. The copolymers were synthesized at various feed mole fractions of comonomer diamine and characterized by elemental analysis, FTIR, 1H‐NMR spectroscopy, and electrical conductivity. The polymerization yield depended on the substituent position in the aromatic ring. Copper ion was incorporated in the polymers and the amount depended on the side groups position in the aromatic ring. The thermal stability increased when copper ions and aniline units were incorporated in the polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 31–36, 2004  相似文献   

11.
Poly(dimethylsiloxane)(PDMS)‐based triblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP) initiated with bis(bromoalkyl)‐terminated PDMS macroinitiator (Br‐PDMS‐Br). First, Br‐PDMS‐Br was prepared by reaction between the bis(hydroxyalkyl)‐terminated PDMS and 2‐bromo‐2‐methylpropionyl bromide. PSt‐b‐PDMS‐b‐PSt, PMMA‐b‐PDMS‐b‐PMMA and PMA‐b‐PDMS‐b‐PMA triblock copolymers were then synthesized via ATRP of styrene (St), methyl methacrylate (MMA) and methyl acrylate (MA), respectively, in the presence of Br‐PDMS‐Br as a macroinitiator and CuCl/PMDETA as a catalyst system at 80 oC. Triblock copolymers were characterized by FTIR, 1H‐NMR and GPC techniques. GPC results showed linear dependence of the number‐average molecular weight on the conversion as well as the narrow polydispersity indicies (PDI < 1.57) for the synthesized triblock copolymers which was lower than that of Br‐PDMS‐Br macroinitiator (PDI = 1.90), indicating the living/controlled characteristic of the reaction. Also, there was a very good agreement between the number‐average molecular weight calculated from 1HNMR spectra and that calculated theoretically. Results showed that resulting copolymers have two glass transition temperatures, indicating that triblock copolymers have microphase separated morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
In this study, poly(o‐anisidine) [POA], poly(o‐anisidine‐co‐aniline) [POA‐co‐A], and polyaniline [PANi] were chemically synthesized using a single polymerization process with aniline and o‐anisidine as the respective monomers. During the polymerization process, p‐toluene sulfonic acid monohydrate was used as a dopant while ammonium persulfate was used as an oxidant. N‐methyl‐pyrolidone (NMP) was used as a solvent. We observed that the ATR spectra of POA‐co‐A showed features similar to those of PANi and POA as well as additional ones. POA‐co‐A also achieved broader and more extended UV–vis absorption than POA but less than PANi. The chemical and electronic structure of the product of polymerization was studied using Attenuated Total Reflectance spectroscopy (ATR) and UV–visible spectroscopy (UV–vis). The transition temperature of the homopolymers and copolymers was studied using differential scanning calorimetry and the viscosity average molecular weight was studied by using dilute solution viscometry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
ABA‐type block copolymers composed of 2,5‐diphenyl‐1,3,4‐thiadiazole (DPTD) oligoester and poly(methyl methacrylate) (PMMA) segments (Mn = 16 200 and 23 000) were synthesized by atom‐transfer radical polymerization and their liquid‐crystalline (LC) and photoluminescence (PL) properties were examined. The structures of block copolymers were identified by Fourier transform infrared and 1H NMR spectroscopies. Differential scanning calorimetry measurement, polarizing microscopy observation and wide‐angle X‐ray analysis revealed that the block copolymers form thermotropic LC phase (smectic C) independent of molecular weights of PMMA segments, but a model polymer (PMMA segments having the DPTD unit in the central part) has no LC melt. Solution and solid‐state PL spectra indicated that all the block copolymers display blue emission arising from the DPTD unit. Their quantum yields are 17–21%, which increase with the PMMA chain lengths. The block copolymers have good aligned structures in the LC states, but their order parameter (S) values in sheared LC states were lower than those in the sheared LC compounds. The PL properties in the LC states were independent of the LC aligned structures. Cyclic voltammetry measurements showed that these block copolymers have deep HOMO levels compared with polymers composed of oxadiazole rings. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Polyaniline (PANI), poly(o‐anisidine), and poly[aniline‐co‐(o‐anisidine)] were synthesized by chemical oxidative polymerization with ammonium persulfate as an oxidizing reagent in an HCl medium. The viscosities, electrical conductivity, and crystallinity of the resulting polymers (self‐doped forms) were compared with those of the doped and undoped forms. The self‐doped, doped, and undoped forms of these polymers were characterized with infrared spectroscopy, ultraviolet–visible spectroscopy, and a four‐point‐probe conductivity method. X‐ray diffraction characterization revealed the crystalline nature of the polymers. The observed decrease in the conductivity of the copolymer and poly(o‐anisidine) with respect to PANI was attributed to the incorporation of the methoxy moieties into the PANI chain. The homopolymers attained conductivity in the range of 3.97 × 10?3 to 7.8 S/cm after doping with HCl. The conductivity of the undoped forms of the poly[aniline‐co‐(o‐anisidine)] and poly(o‐anisidine) was observed to be lower than 10?5 J/S cm?1. The conductivity of the studied polymer forms decreased by the doping process in the following order: self‐doped → doped → undoped. The conductivity of the studied polymers decreased by the monomer species in the following order: PANI → poly[aniline‐co‐(o‐anisidine)] → poly(o‐anisidine). All the polymer samples were largely amorphous, but with the attachment of the pendant groups of anisidine to the polymer system, the crystallinity region increased. The undoped form of poly[aniline‐co‐(o‐anisidine)] had good solubility in common organic solvents, whereas doped poly[aniline‐co‐(o‐anisidine)] was moderately crystalline and exhibited higher conductivity than the anisidine homopolymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

15.
Poly(2‐aminobenzoic acid) and poly(3‐aminobenzoic acid) were synthesized by chemical polymerization of the respective monomers with aqueous 1M hydrochloric acid and 0.49M sodium hydroxide, using ammonium persulfate as an oxidizing agent. In addition, polymerization in an acid medium was carried out in the presence of metal ions, such as Cu(II), Ni(II), and Co(II). Poly(2‐aminobenzoic acid‐co‐aniline) and poly(3‐aminobenzoic acid‐co‐aniline) were synthesized by chemical copolymerization of aniline with 2‐ and 3‐aminobenzoic acids, respectively, in aqueous 1M hydrochloric acid. The copolymers were synthesized at several mole fractions of aniline in the feed and characterized by UV–visible and FTIR spectroscopy, the thermal stability, and the electrical conductivity. Metal ions, such as Cu(II), Ni(II), and Co(II), were incorporated into homo‐ and copolymers by the batch method. The percentage of metal ions in the polymers was higher in the copolymers than in the homopolymers. The thermal stability of the copolymers increased as the feed mole fraction of aniline decreased and varied with the incorporation of metal ions in the polymers. The electrical conductivity of the homo‐ and copolymers was measured, which ranged between 10?3 and 10?10 S cm?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2641–2648, 2003  相似文献   

16.
Copolymer microtubes composed of aniline and o‐toluidine were prepared through the synthesis of the desired polymer within the pores of a microporous anodic aluminum oxide (AAO) template. Scanning electron microscopy and transmission electron microscopy revealed that the obtained copolymer microtubes had uniform and well‐aligned arrays, and the aspect ratios of the AAO membranes could be controlled through their diameter and length. Infrared spectrometry and X‐ray photoelectron spectroscopy supported the surface analysis for the microtubes and also proved the formation of copolymers. Ultraviolet–visible/near‐infrared spectra proved that the doping effect decreased with an increase of o‐toluidine in the copolymers, but the solubility greatly improved (up to 3.83 g/L in N,N‐dimethylformamide), and the conductivity was as high as approximately 17.4 S cm?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1539–1543, 2005  相似文献   

17.
《Polymer Composites》2017,38(9):1792-1799
A series of poly(acrylonitrile‐co‐hexyl methacrylate), PAN‐co‐PHMA, copolymers with various hexyl methacrylate (HMA) contents were synthesized by emulsion technique. The incorporation of HMA units into the copolymers was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Glass transition temperatures (T g) and thermal decomposition temperatures of copolymers were determined by differential scanning calorimetry and thermogravimetric analysis. The T g of copolymers were lowered monotonically by increasing HMA content, while thermal stabilities of copolymers were enhanced. The frequency dependence of dielectric properties of three different amounts of LiClO4 salt doped copolymer films was investigated. The influence of molar fraction of HMA on dielectric constant and ac‐conductivity of copolymer films was examined. Samples with higher HMA contents showed better stability and conductivity, as a result of increase in free volume and the mobility of the dipoles. The ac conductivity of copolymers was also improved by increasing LiClO4 salt which was due to the existence of more charge carriers. PAN(88)‐co‐PHMA(12) copolymer with 1.5 mol% of lithium salt exhibited ionic conductivity of the 7.8 × 10−4 S/cm at 298 K. POLYM. COMPOS., 38:1792–1799, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
In this study, a series of poly(styrene‐co‐vinyl phosphonic acid) [P(S‐co‐VPA)] copolymers were synthesized by the free‐radical copolymerization of styrene and vinyl dimethyl phosphonate followed by alkaline hydrolysis. The P(S‐co‐VPA) copolymers were characterized by size exclusion chromatography (gel permeation chromatography), Fourier transform infrared vibrational spectroscopy, proton nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and electrochemical impedance spectroscopy. Despite the difference between the copolymerization ratios of styrene and vinyl dimethyl phosphonate, the resulting copolymers presented single glass transitions at temperatures that depended on the acidic group amount. The glass transition shifted to a higher temperature and became broader as the amount of phosphonic acid increased. The storage modulus at temperatures higher than the glass transition also increased with increasing acidic groups because of intramolecular and intermolecular interactions. All of the acid copolymers were thermally stable to at least 300°C. A high oxidative stability was found for 3 : 1 P(S‐co‐VPA), which also presented conductivity values on the order of 10−6 Ω−1 cm−1 at room temperature. The 1 : 1 P(S‐co‐VPA) membrane presented Arrhenius‐type behavior at temperatures from 30 to 80°C and conductivity on the order of 10−5 Ω−1 cm−1. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Amphiphilic conetwork–structured copolymers containing different lengths of ethylene oxide (EO) chains as ionophilic units and methyl methacrylate (MMA) chains as ionophobic units were prepared by free radical copolymerization and characterized by FTIR and thermal analysis. Polymer gel electrolytes based on the copolymers complexed with liquid lithium electrolytes (dimethyl carbonate (DMC) : diethyl carbonate (DEC) : ethylene carbonate (EC) = 1 : 1 : 1 (W/W/W), LiPF6 1.0M) were characterized by differential scanning calorimetry and impedance spectroscopy. A maximum ion conductivity of 4.27 × 10?4 S/cm at 25oC was found for the polymer electrolyte based on (PEG2000‐b‐GMA)‐co‐MMA with long EO groups. Moreover, the effect of temperature on conductivity of the amphiphilic polymer electrolytes obeys the Arrhenius equation. The good room temperature conductivity of the polymer electrolytes is proposed to relate to the enhancement in the amorphous domain of the copolymers due to their amphiphilic conetwork structure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Copolymers of poly(acrylonitrile‐co‐ethyl methacrylate), P(AN‐EMA), with three different EMA content and parent homopolymers were synthesized by emulsion polymerization. The chemical composition of copolymers were identified by FTIR, 1H‐NMR and 13C‐NMR spectroscopy. The thermal properties of copolymers were modified by changing the EMA content in copolymer compositions. Various amounts of LiClO4 salt loaded (PAN‐co‐PEMA) copolymer films were prepared by solution casting. The dielectric properties of these films at different temperatures and frequencies were investigated. It was found that the dielectric constant and ac‐conductivity of copolymer films were strongly influenced by the salt amounts and EMA content in copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号