首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用柠檬酸-凝胶法合成技术制备YAG∶ Ce荧光粉,研究了Ce~(3+)掺杂量、煅烧温度对荧光粉的光谱强度的影响.结果表明:当Ce~(3+)掺杂量x≤0.07时,光谱强度随x增大而增强;当x>0.07时,光谱强度随x增大而减弱.随着煅烧温度的提高,粉体的结晶度不断提高,YAG∶ Ce荧光粉的光谱相对强度逐渐增强.光谱的峰形和峰值不受温度和x的影响,主激发峰位于469 nm,发射峰位于529 nm.  相似文献   

2.
以碳酸氢铵和氨水混合溶液为沉淀剂,采用甲醇辅助共沉淀法制备以SiO_2为核、YAG:Ce~(3+)为壳的核壳结构YAG:Ce~(3+)@SiO_2纳米荧光粉。采用热分析(TG-DTG)、X射线粉末衍射(XRD)、透射电镜(TEM)、荧光光谱(PL)对粉体进行表征。XRD表征结果表明,前驱体经过1 000℃煅烧3 h制备的YAG:Ce~(3+)样品为YAG纯相,YAG:Ce~(3+)@SiO_2样品为YAG相和SiO_2相。TEM表征结果表明,YAG:Ce~(3+)@SiO_2核壳结构中SiO_2核的大小为30~40 nm、壳厚约为10 nm。YAG:Ce~(3+)@SiO_2荧光粉激发光谱为双峰结构,主要激发峰为451 nm,与Ga N的蓝光发射匹配;发射光谱为一宽带,主峰波长为525 nm,能与Ga N的蓝光组合形成高亮度白光。而且YAG:Ce~(3+)@SiO_2的激发光谱和发射光谱的强度比YAG:Ce~(3+)粉体强。  相似文献   

3.
通过高温固相法,在550℃下煅烧4h,制备了KY(MoO_4)_2:Pr~(3+)新型红色荧光粉,通过X射线衍射(XRD)和荧光光谱(PL),研究了其结构和发光性质。结果表明:煅烧温度为550℃、煅烧时间为4 h时,样品的发光强度最好;随着Pr~(3+)浓度的变大,样品的发光强度不断增加,当Pr~(3+)的摩尔掺杂量为4%时,样品的荧光强度达到最大,继续增加Pr~(3+)的浓度,由于浓度猝灭,样品发光强度降低。KY(MoO_4)_2:Pr~(3+)在456 nm处可被蓝光有效地激发,样品的发射峰波长主要位于609、627、657 nm处,其中在657 nm处发射出较强的红光。在不同Pr~(3+)掺杂浓度下,KY(MoO_4)_2:Pr~(3+)的色坐标均显示出相近的值,并且均位于红色区域。KY(MoO_4)_2:Pr~(3+)有望用于蓝光激发白光发光二极管(白光LED)的红色荧光粉。  相似文献   

4.
关丽  魏伟  刘超  尚雅轩  杨志平 《硅酸盐学报》2012,40(12):1744-1748
采用高温固相法在800℃制备了LiY(MoO4)2:Dy3+荧光粉。研究了Dy3+掺杂量、合成温度以及Li+的过量加入对LiY(MoO4)2:Dy3+荧光粉发光强度的影响。结果表明:在紫外光(386nm)激发下,该荧光粉的发射光谱为1个峰值位于488nm和575nm的双峰谱线,其中位于575nm处的黄光发射最强;监测575 nm发射峰得到的激发光谱为主峰位于351、366、386 nm和426 nm的线状谱线。煅烧温度为800℃时合成的荧光粉样品的发光强度达到最大,加入过量的Li+会降低发光强度。随Dy3+掺杂量的增大,荧光粉的发光强度逐渐增强,当Dy3+掺杂量为6%时发射的谱线强度最大。荧光粉的色参数表明,该荧光粉是一种较好的用于白光LED的黄色发光材料。  相似文献   

5.
采用固相合成法制备了LiY_(0.99-x)Ce_(0.01)Pr_xSiO_4(x=0~5%)系列化合物,采用X射线粉末衍射、紫外-可见漫反射光谱、光致发光光谱、X射线激发发射光谱以及光致发光衰减曲线对其系列化合物的物相、发光性能进行了表征。结果表明:在煅烧温度为1100℃所制备的样品均为纯LiYSiO_4相;Ce~(3+)的吸收峰位于325和364nm。Pr~(3+)、Ce~(3+)共掺时,由于Pr~(3+)-Ce~(3+)之间的能量传递作用,在250nm波长的紫外光激发下,在400 nm处产生了Ce~(3+)的特征发射峰。随着Pr~(3+)掺杂量的增加,Ce~(3+)在X射线激发下的发光强度逐渐下降,但Ce~(3+)在320 nm的波长激发下的衰减逐渐变快。  相似文献   

6.
以Al(NO_3)_3·9H_2O、Y (NO_3)_3·6H_2O和Ce (NO_3)_3·5H_2O为原料、NH_4HCO_3为沉淀剂、十二烷基苯磺酸(C_(18)H_(30)SO_3)为分散剂,采用改进的共沉淀法合成YAG:Ce~(3+)纳米荧光粉体。实验结果表明:前驱体经过800℃煅烧2 h后已完全转变成纯立方相YAG:Ce~(3+)纳米荧光粉体,900℃煅烧2 h后的粉体分散性好、颗粒尺寸分布均匀、形状近似球形,平均粒径约为70 nm。在450 nm激发下荧光粉的最强发射峰为545 nm,在约180℃条件下的亮度为30℃条件下的88. 5%左右,具有优异的高温热稳定性能。  相似文献   

7.
采用高温固相法合成了不同助溶剂掺杂的CaO:Eu~(3+)荧光粉体。在209nm激发下,得到640nm较强烈的红光发射峰,归属于Eu~(3+)离子~5D_0~7F_2电子跃迁。并研究了添加助溶剂对荧光粉发光强度的改变,当添加助溶剂NH4Cl后,荧光粉体的发光强度并没有得到提高,反而使得荧光粉性能变差,而当添加H_3BO_3助溶剂后,荧光粉的发光强度得到10%左右的提升;最后研究了煅烧温度对荧光粉体发光性能的影响,样品在1000℃煅烧后表现出来的发光强度最差,而在1100℃煅烧后,荧光粉的发光性能达到最高。  相似文献   

8.
丙二酸溶胶-凝胶法合成亚微米级YAG:Ce,Gd黄色荧光粉   总被引:2,自引:2,他引:0       下载免费PDF全文
以丙二酸为络合剂,通过溶胶-凝胶法合成了亚微米级YAG:Ce,Gd黄色荧光粉.采用TG/DSC、XRD研究干凝胶热分解和YAG晶相形成的过程;通过荧光光谱分析了Gd~(3+)的掺杂对荧光粉的发光强度的影响规律;通过SEM观察粉体的微观形貌.结果表明:经1200 ℃煅烧3 h得到的荧光粉,粉体粒径为0.3~1 μm,颗粒规则接近球形;随着Gd~(3+)掺杂量的增加,荧光粉的发射光谱由525 nm红移到550 nm.  相似文献   

9.
采用微波合成方法在不同煅烧温度、煅烧气氛下制备了Si4+掺杂的YAG荧光粉,研究了制备条件对荧光粉性能的影响.结果表明:煅烧温度和气氛对荧光粉的发光效果有重要影响.在H2/N2气氛下,随煅烧温度升高,荧光粉的发射光谱强度提高;Si4+掺杂的YAG:Ce3+荧光粉与纯的YAG:Ce3+荧光粉相比,发射光谱峰变宽,发光强度...  相似文献   

10.
采用柠檬酸溶胶-凝胶法制备CaMoO_4∶Eu~(3+)荧光粉,对样品进行了X射线衍射(XRD)、场发射扫描电镜(FESEM)和荧光光谱(PL)分析,研究了其结构和发光性能。结果表明,样品的晶体结构为白钨矿结构,在800℃的煅烧温度下样品颗粒形貌良好、尺寸均匀;用396 nm的近紫外光激发样品,主发射峰位于616 nm处,对应于Eu~(3+)离子的~5D_0-~7F_2跃迁,发出的是红光;Eu~(3+)离子掺杂量为25 mol%发光强度最强,高于25 mol%出现浓度淬灭效应使发光强度下降。  相似文献   

11.
采用高温固相法制备了Ce~(3+)、Sm~(3+)和Ce~(3+)/Sm~(3+)掺杂的Ca_9Al(PO_4)_7荧光粉。以327 nm紫外光作为激发源时,Ca_9Al(PO_4)_7:Ce~(3+)在386 nm处出现宽发射峰,其发射对应于Ce~(3+)的4f 05d1→4f 1跃迁的蓝色光,主峰位于386 nm;在407 nm近紫外光激发下,Ca_9Al(PO_4)_7:Sm~(3+)发射红色光。为了增强Ca_9Al(PO_4)_7:Sm~(3+)的发射强度,将Ce~(3+)引入到材料中,通过Ce~(3+)到Sm~(3+)的能量传递,有效地增强了材料的发射强度,为开展白光LEDs用红色荧光粉提供了参考。  相似文献   

12.
采用液相共沉淀法,在1050℃煅烧合成了纯相Cex:Y3-xAl5O12(Cex:YAG)纳米荧光粉。荧光粉的发射峰位于526.6 nm附近,吸收峰位于454 nm附近。当x=0.04时,发现荧光粉的发射强度最大。荧光粉的粒径大约为100 nm,呈现棒状或椭球状。结果表明此荧光粉适用于Ga N基底白光LED。  相似文献   

13.
采用高温固相法制备了双色可调荧光粉MgY_2Al_4SiO_(12):Eu~(2+),Ce~(3+),并对其晶体结构和发光特性进行了研究。在340 nm紫外光激发下荧光粉的发射光谱由两个谱带组成,以445 nm为主峰的蓝光发射带归属于Eu~(2+)的4f~65d~1→4f~7能级跃迁,峰值位于565 nm的黄光发射带则对应于Ce~(3+)的5d→4f(~2F_(2/7),~2F_(2/5))跃迁。根据Dexter共振能量传递理论和Reisfeld近似计算得到Eu~(2+),Ce~(3+)之间存在电偶极-电偶极能量传递过程。当Eu~(2+)和Ce~(3+)的掺杂浓度分别为0.01和0.06时,荧光粉的色坐标位置落在黄绿光区域,并可以通过改变基质中Eu~(2+)和Ce~(3+)的摩尔比来调节荧光粉的色坐标。MgY_2Al_4SiO_(12):Eu~(2+),Ce~(3+)是一种适用于紫外芯片的新型双色可调谐白光LED用荧光粉。  相似文献   

14.
采用高温固相法合成了一系列NaBaSi_xP_(1-x)O_4:Eu~(3+)橙红色荧光粉。表征了荧光粉的晶体结构和发光性能。考察了煅烧温度和Si~(4+)掺杂量对荧光粉结构和发光性能的影响。结果表明:掺杂Si~(4+)对荧光粉的晶型没有明显影响,但是导致了晶格膨胀。750℃煅烧时基质已形成NaBaPO_4相,晶型为六方晶系,荧光粉发射峰强度最强。激发光谱由200~280 nm的宽带和310~500 nm的一系列尖峰组成,分别对应于O~(2–)→Eu~(3+)电荷迁移带和Eu~(3+)的f→f能级跃迁吸收,最强激发峰位于393 nm左右,与近紫外LED芯片的发射光谱匹配。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。NaBa_(0.92)Si_xP_(1–x)O_4:0.08Eu~(3+)中Si~(4+)的最佳掺杂量为0.02 mol,Na Ba_(0.92)Si_(0.02)P_(0.98)O_4:0.08Eu~(3+)样品在616和591 nm附近的发射强度比单掺杂Eu~(3+)的样品分别提高了66.6%和63.6%。  相似文献   

15.
为提高白光LED的显色指数,降低色温,采用阳离子协同替换的方式,在YAG石榴石相中引入N~(3-)的方式,合成一种新型可被蓝光LED激发的石榴石相结构的氮氧化物荧光粉。利用高温固相法合成了Ce~(3+)掺杂的Y_(2.94-x)Zr_xAl_(5-y)Si_yO_(12-z)Nz∶0.06Ce~(3+)(YZASON∶0.06Ce~(3+))(x=y=0.5、x=1,y=0.5、x=y=1)荧光粉,采用XRD、荧光光谱仪等表征手段对所制备的荧光粉的晶体结构与发光性能进行表征;并考察了原料投料量和助熔剂种类等对共生相的影响。结果表明,所制得的荧光粉是石榴石相和Zr_(0.72)Y_(0.28)O_(1.862)共生相的两相结构,并几乎不受原料投料量和助熔剂种类变化的影响;发射光谱相对于YAG∶Ce~(3+)荧光粉有明显的红移,最大红移量26 nm左右;热猝灭较小;在色坐标上相对于在黄绿光区域和色温较高的YAG∶Ce~(3+)荧光粉,能够表现出黄光且色温也较低(CCT6 000 K)。  相似文献   

16.
采用气压烧结法制备了用于暖白光LED的红色氮化物CaAlSiN_3:Eu~(2+)荧光粉,利用X射线衍射仪(XRD)、扫描电镜(SEM)、荧光光谱仪(PL)对其物相组成、微观形貌、发光性能进行了表征。结果表明:在Eu~(2+)浓度为2mol%、反应温度为1700°C、反应压力为0.65MPa时,急冷温度为1200°C得到的荧光粉结晶最好,发光强度最强。通过改变急冷温度可以使发射峰波长从637nm红移到646nm,这是一种新的调控荧光粉发射峰的手段。经过酸洗后,荧光粉的发射峰强度可以提高约9.3%。  相似文献   

17.
采用微波均相沉淀方法,添加NaF、BaF2及其与H3BO3的混合助熔剂制备YAG:Ce3+荧光粉。同纯YAG:Ce3+荧光粉相比,其结晶度高,衍射峰无杂峰,且有明显团聚性;发光强度更高,加入NaF的添加量为6%最佳。加入BaF2的YAG:Ce3+荧光粉与纯YAG:Ce3+荧光粉相比,其发光强度较高。加入混合助熔剂(1%BaF2+1%H3BO3)的荧光粉的发光强度最大。  相似文献   

18.
采用高温固相法制备了一系列Eu~(3+)掺杂ZnMoO_4的荧光粉。采用粉末X射线衍射仪对样品的物相进行了分析,对样品的光致发光性质进行了系统的研究。Eu~(3+)最强的发射峰位于617nm处。所制备的荧光粉发光颜色为红色,并且由发光强度对比图得出Eu~(3+)离子的最佳掺杂浓度为0.04。  相似文献   

19.
本文利用经典的水热合成法成功制备了Sm~(3+)离子掺杂的SrMoO_4荧光粉.利用不同测试手段分别测试了合成荧光粉的物相结构、微观形貌以及激发和发射光谱.结果表明合成的样品均为纯相物质.合成的SrMoO_4为哑铃状的形貌,平均长度约为10μm.从高倍放大的照片可以看出SrMoO_4样品是由许多微小的纳米方形颗粒组成的,外表面非常粗糙.在403 nm光的激发下,制备荧光粉中的Sm~(3+)离子吸收能量之后,能够产生f-f跃迁,而发射橙红光。在643 nm检测下,能够观察到Sm~(3+)离子的特征激发峰.通过改变Sm~(3+)的掺杂浓度,对比发光强度可以得出当x=0.02时SrMoO_4:xSm~(3+)的发光强度最高.  相似文献   

20.
合成了SrWO_4∶Gd~(3+),Tb~(3+)两个系列荧光发光粉,其XRD衍射测试结果表明,合成材料结构均为体心四方晶系。颗粒的形貌为类球形,分散性很好,平均晶粒尺寸在3μm左右。荧光光谱检测表明,在223nm激发下,Sr_(0.9)WO_4∶0.05 Gd~(3+),0.05Tb~(3+)荧光粉最强发射峰位于549nm处,属于Tb~(3+)的~5D_4→~7F_5的跃迁,在该体系中存在Gd~(3+)→Tb~(3+)的能量传递,使得该荧光粉的发光强度随着Gd~(3+)掺杂浓度的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号