首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

2.
采用Al-7Si-20Cu钎料在真空钎焊条件下(不添加钎剂)对1060铝合金与Q235钢(镀Ni与不镀Ni)进行钎焊试验,研究了钎焊接头的显微组织及力学性能。研究结果表明,570℃钎焊5 min时,Fe表面不镀Ni时,Fe侧界面处生成厚度较大的Fe_2A_(l5)和FeAl_3脆性化合物,接头抗剪切强度仅为40 MPa。当Fe表面镀Ni后,Ni层的存在抑制了脆性Fe-Al化合物的形成,Fe侧界面生成Ni_2Al_3和NiAl_3化合物层,接头的剪切强度显著提高。延长钎焊时间,Ni_2Al_3层变薄,Ni Al3层增厚,接头剪切强度提高。当钎焊时间继续增加,Ni层消失,再次生成Fe-Al化合物,接头剪切强度降低。  相似文献   

3.
采用Ag-Cu-Ti钎料对Al_2O_3陶瓷与304不锈钢进行了不同工艺参数下的真空钎焊连接试验。通过SEM、EDS、XRD方法分析了钎焊接头的显微组织和界面反应产物,研究了钎焊温度和保温时间对钎焊接头组织和裂纹的影响。结果表明,Al_2O_3/304接头钎缝分为3个反应区,分别是靠近陶瓷的反应层,由Ti O反应层和Ti3Al反应层组成;钎缝区,由Ag(Cu)固溶体、Cu(Ag)固溶体和Ti Fe_2组成;靠近不锈钢的Ti Fe_2+Ti O反应层。随着钎焊温度升高,保温时间的延长,接头钎缝中Ti Fe_2数量增加,尺寸增大,这降低了通过塑性变形缓解接头残余应力的能力,同时陶瓷侧界面反应层增厚。这些使得接头陶瓷的裂纹现象越严重。  相似文献   

4.
为了实现Al钎料对Al N的直接钎焊,提出了一种可以在熔化后自行去除表面Al_2O_3膜的镀膜Al箔钎料,以及提高Al钎焊Al N接头强度的升温钎焊方法,研究了表面气相沉积Ni/Al双层薄膜对Al箔表面Al_2O_3氧化膜的自去除作用,以及钎焊温度对接头强度提高的作用。结果表明,由于被Ni/Al双层薄膜掩埋,原Al箔表面的Al_2O_3氧化膜在钎料加热及熔化的过程中被破碎并卷入到含1%Ni(原子分数)的Al液中,实现了Al对Al N的无界面反应过渡层直接钎焊。采用升高钎焊温度的方法,可显著提高接头的强度。680℃钎焊时,由于Al液不润湿Al N,接头的断裂发生在Al钎缝与Al N的界面,剪切强度为79 MPa;随着钎焊温度的提高和润湿性的改善,Al/Al N的界面强度得到显著提高,接头的断裂逐步由界面转移至钎缝金属中,接头强度也相应逐步提高,并在840℃后达到最高值(146 MPa)。  相似文献   

5.
研究了Ni元素的加入对Cu-Sn-Ti-Ni钎料钎焊Al_2O_3/Cu的接头强度的影响。结果表明,随着Ni含量的增加,Al_2O_3/Cu的接头强度增加,当Ni含量为4%时,其接头强度达到95.42 MPa,再继续增加Ni,连接强度降低。Cu-Sn-Ti钎料连接的Al_2O_3/Cu的接头断裂位置为近焊缝处的陶瓷断裂;添加Ni元素后,接头断裂位置发生变化:Ni含量低于3%时,为混合型断裂,即部分断裂在近焊缝处的陶瓷,部分断裂在焊缝处;不低于4%时,为焊缝处断裂。采用扫描电镜以及电子能谱仪分析界面的微观结构和成分,分析认为,Ni元素的加入,影响了Ti和Al2O3的反应,从而影响了Al2O3陶瓷和无氧Cu的接头强度。  相似文献   

6.
利用Al-Si-Mg钎料和自制工艺罩内置Mg粉方法,实现化学镀镍Al2O3陶瓷与5A05铝合金的真空钎焊连接,并分析保温时间及连接温度对接头界面结构和抗剪强度的影响。结果表明:连接温度570℃,保温时间15min为最佳工艺参数,此时接头界面结构为Al2O3/Ni(Ⅰ区)/Al3Ni2(Ⅱ区)/Al3Ni+Mg2Si(Ⅲ区)/α(Al)+Mg2Si(Ⅳ区)/5A05,接头的抗剪强度为25MPa。随着保温时间的延长,Ni层变薄,Al3Ni2组织的变化不大,Al3Ni+Mg2Si组织逐渐变宽,且呈分散趋势;当保温时间延长到50min时,Al3Ni+Mg2Si完全变成零乱的形状、大小不一的块状分布,且靠近5A05侧的Mg2Si消失。连接温度对界面组织结构的影响与保温时间的影响相似,接头断裂形式为脆性断裂。当接头的强度较低时,断裂发生在铝合金侧的α(Al)+Mg2Si附近;当接头的强度较高时,断裂发生在镀Ni层+界面区(Ⅱ区与Ⅲ区)。  相似文献   

7.
兼具陶瓷与金属优异性能的复合构件的连接一直是材料的研究热点。本课题采用活性钎料AgCuTi钎焊了Al_2O_3陶瓷和GH99高温合金接头,并分析了接头的界面结构以及界面形成的机理,研究了钎焊温度和保温时间对接头组织结构的影响,得出了以下结论:接头连接完好,钎焊界面中无孔洞、裂纹等缺陷,接头典型界面组织结构为GH99/TiNi_3/Cu(s,s)+Ag(s,s)/Cu_3Ti_3O(Ti(O)_(3x))/Al_2O_3;连接温度升高,钎料与两侧母材的反应作用加剧,GH99侧的TiNi_3反应层增厚,且延伸进钎料中部,而陶瓷侧未观察到明显的反应层,但陶瓷与钎料相互扩散得更充分;随着保温时间的延长,GH99侧TiNi_3反应层的厚度增厚明显,保温时间较长时该反应层中产生微裂纹,而Al_2O_3陶瓷侧的连接则更为致密。  相似文献   

8.
采用Ag Cu Ti活性钎料对Invar合金和Si3N4陶瓷进行钎焊连接,研究了接头界面组织及其形成机制,分析了钎焊工艺参数对接头界面结构和性能的影响。结果表明,钎焊过程中液态钎料中的活性元素Ti与Si3N4陶瓷发生反应,在陶瓷界面形成致密的Ti N和Ti5Si3反应层;同时,Invar合金向液态钎料中溶解,与活性元素Ti反应生成脆性的Fe2Ti和Ni3Ti化合物。钎焊温度和保温时间影响Si3N4陶瓷界面反应层的厚度以及接头中Fe2Ti和Ni3Ti脆性化合物的形成量和分布,这两方面共同决定着接头的抗剪强度。当钎焊温度为870℃,保温15 min时,接头的平均抗剪强度最大值达到92.8 MPa,此时接头的断裂形式呈现沿Si3N4陶瓷基体和界面反应层的复合断裂模式。  相似文献   

9.
研究开发了Al_2O_3陶瓷与Kovar合金直接钎焊用Cu-Sn-Ti-Ni活性粉末钎料。在真空下采用该钎料钎焊Al_2O_3和Kovar合金,并对接头的微观组织、抗剪强度及断口进行了分析。结果表明,Al_2O_3/钎料界面上生成了厚度约为1μm的反应层,该反应层主要由Cu_3TiO_4和AlTi组成;钎料层主要由Cu(s,s)、NiTi和TiFe_2等组成。Al_2O_3与Kovar在920℃真空条件下焊接性能良好,抗剪强度102.86 MPa,且断裂主要发生在Al_2O_3陶瓷与钎料结合的界面上。  相似文献   

10.
采用BNi2钎料,对ZrB2-SiC陶瓷复合材料进行真空钎焊研究.借助SEM,EDS,XRD等分析测试手段分析了界面组织结构及性能.确定了最佳钎焊工艺参数:钎焊温度1160℃,保温时间20 min.结果表明,接头界面产物主要有δ-Ni2Si,β1-Ni3Si,ZrB2+C,Ni(s,s),CrxByCz.随着钎焊温度升高以及保温时间的延长,接头抗剪强度均先升高后降低.钎焊温度1160℃,保温时间20 min,钎焊接头室温抗剪强度达到最大121.3 MPa.钎焊温度和保温时间对接头断裂方式的影响有相似的规律,在保温时间较短时,裂纹主要产生于钎缝中的Ni(s,s)中,之后向Ni元素扩散层中扩展;当保温时间适中时,断裂主要发生在Ni元素扩散层中;当保温时间延长时,裂纹主要产生于含有一定β1-Ni3Si相的Ni(s,s)中,之后向Ni元素扩散层中扩展.  相似文献   

11.
采用Al-Si-Mg钎料成功实现了5005铝合金与1Cr18Ni9Ti不锈钢的真空钎焊,借助扫描电镜、能谱分析仪和X射线衍射仪对焊后接头界面组织进行分析,同时对接头抗剪强度进行测试.结果表明,焊后接头界面结构从1Cr18Ni9Ti不锈钢侧到5005铝合金侧的界面组织依次为FeAl,FeAl3,FemAln+αAl.随着钎焊温度的升高或保温时间的延长,接头抗剪强度均呈现先升高后降低的变化趋势.当钎焊温度为580℃,保温时间为15 min时,接头抗剪强度达到最大值49 MPa.接头断裂形式受钎焊温度的影响,当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及FemAln+αAl反应层;温度升高至580℃时,接头断裂于FemAln+αAl反应层中,接头抗剪强度最高.  相似文献   

12.
TiAl基合金与Ni基合金钎焊连接接头界面组织及性能   总被引:1,自引:0,他引:1  
采用BNi2钎料实现了TiAl基合金与Ni基高温合金的钎焊。采用扫描电镜、能谱分析和X射线衍射等手段对钎焊接头的界面组织结构及生成相进行分析,并对接头的抗剪强度进行测试。结果表明,钎焊接头的典型界面结构为:GH99/(Ni)ss (γ)+Ni3B+CrB+富Ti-硼化物/TiNi2Al/TiNiAl+Ti3Al/TiAl;随着钎焊温度的升高或保温时间的延长,较多的B和Si元素扩散进入两侧母材,导致钎缝中硼化物数量减少,而TiAl/钎缝界面的TiNi2Al和TiNiAl+Ti3Al金属间化合物层厚度增加;当钎焊温度为1050 ℃,保温时间为5 min时,接头的抗剪强度达到最大为205 MPa,接头主要断裂于TiNiAl金属间化合物层。当钎焊温度升高或保温时间继续延长时,TiNiAl厚度显著增加,导致接头强度下降  相似文献   

13.
采用Ag Cu Ti钎料实现了Al_2O_3陶瓷与Fe-Co-Ni合金的钎焊连接,并调查了不同钛含量的钎料对Al_2O_3/Ag-Cu-Ti/Fe-Ni-Co钎焊接头机械性能和微观组织结构的影响。利用扫描电镜(SEM),X射线能量谱仪(EDS),X射线衍射仪(XRD)及电子万能试验机研究了钎焊接头的力学性能和微观组织结构。结果表明,钛含量的增加明显提高Ag-Cu-Ti钎料与Al_2O_3陶瓷的相互作用,在Al_2O_3/Ag-Cu-Ti界面生成一层由Ti-Al和Ti-O化合物组成的反应层。Al_2O_3/Ag-Cu-Ti/Fe-Ni-Co钎焊接头的抗拉强度随钛含量的增加而增加,当钛含量提高到8%(质量分数)时,抗拉强度达到最大值78 MPa。通过微观组织结构分析发现,采用AgCu4Ti在890℃保温5 min的条件下可以获得较好的钎焊接头,典型接头的微观组织结构为Al_2O_3/TiAl+Ti_3O_5/NiTi+Cu_3Ti+Ag(s,s)/Ag(s,s)+Cu(s,s)+(Cu,Ni)/Fe-Ni-Co。采用Ag-Cu-8Ti获得的钎焊接头的界面反应层与Ag-Cu-4Ti差异不大,但反应层稍微增厚,并伴有TiO和Ti_3Al在Al_2O_3/Ag-Cu-Ti界面生成。  相似文献   

14.
利用Al-Si-Mg钎料实现5005铝合金与4J34可伐合金的真空钎焊,研究了接头界面结构及其形成机理,分析了钎焊温度及保温时间对接头界面结构和抗剪强度的影响。结果表明:随着钎焊温度的升高和保温时间的延长,接头的抗剪强度先升高后降低;当钎焊温度为580℃、保温时间为15 min时,接头抗剪强度达到最大值81 MPa,此时,接头的典型界面结构为4J34可伐合金/FeAl/FeAl3/FemAln+α(Al)/5005铝合金。接头的断裂形式主要受钎焊温度的影响;当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及铝合金内;当温度升高至580℃时,接头断裂于FemAln+α(Al)反应层中。  相似文献   

15.
通过对比试验优选出了合适钎料,并进行了后续钎焊试验.在钎焊温度800~900℃,保温时间为10 min的条件下,采用Ag-Cu-Ti钎料实现了DD3镍基高温合金与Ti3AlC2陶瓷的真空钎焊连接.利用扫描电镜、能谱仪、XRD等对接头的界面结构进行了分析.结果表明,接头的典型界面结构为DD3/AlNi/Al3(Ni,Cu)5+Al(Ni,Cu)+Agss/(Al,Ti)3(Ni,Cu)5/Al4Cu9+AlNi2Ti+Agss/TiAg/Ti3AlC2.接头的力学性能测试表明,在钎焊温度为850℃,保温时间为10 min的条件下,接头的最高抗剪强度可达135.9 MPa,断裂发生在靠近钎缝的Ti3AlC2陶瓷侧.降低和提高钎焊温度对接头界面组织影响不大,但接头强度有一定程度下降.  相似文献   

16.
在钎焊时间10 min,钎焊温度820~900℃的条件下,采用AgCu钎料对C/C复合材料和TC4进行了钎焊试验.利用扫描电镜、X射线衍射分析仪、EDS能谱分析仪对接头的界面组织及断口形貌进行了研究.结果表明,C/C复合材料与TC4连接接头的界面结构为C/C复合材料/TiC C/TiCu/Ag(s.s) Cu(s.s) Ti3Cu4/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu Ti(s.s)/TC4.由压剪试验测得的接头抗剪强度可知,在钎焊温度850 ℃,保温时间10 min的钎焊条件下,接头获得的最高抗剪强度达到38 MPa.接头的断口分析表明,接头的断裂位置与被连接处碳纤维方向和钎焊温度有关.当碳纤维轴平行于连接面时,断裂发生在复合材料中.当碳纤维轴垂直于连接面时,若钎焊温度较低,断裂发生在C/C复合材料/钎料界面处;若钎焊温度较高,断裂主要发生在C/C复合材料/钎料界面和钎料/TC4界面处.  相似文献   

17.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

18.
CVD金刚石膜的钎焊界面反应层及微结构   总被引:1,自引:0,他引:1       下载免费PDF全文
孙凤莲  赵密  李丹  谷丰 《焊接学报》2006,27(9):70-72
借助扫描电镜和电子探针,分析了金刚石与Ag-Cu-Ti活性钎料界面反应层的微观组织结构、界面新生化合物的形成机理以及焊接工艺条件对界面结构的影响,建立了钎焊接头界面结构物理模型.结果表明,在一定的钎焊工艺条件下,金刚石/钎料界面存在灰色的新生化合物TiC,与TiC相邻的是蜂窝状的TiCu相;接头断裂不仅仅发生在TiC相中,有时断裂也发生在TiCu层.钎焊加热温度、保温时间、钎料层的含Ti量对CVD金刚石厚膜与硬质合金的接头结构模型有重要影响.  相似文献   

19.
使用Ti-Ni高温钎料实现Cf/SiBCN陶瓷自身连接.分别研究了钎料成分、钎料箔片叠层方式以及钎焊温度对焊接界面组织形貌的影响.结果表明,在Ni元素含量超过50%且以Ni/Ti/Ni方式叠层得到的接头界面良好,其中Ni元素深入陶瓷基体,与Si元素发生反应,在陶瓷内形成扩散层结构,扩散层内的Ni,Si元素成梯度分布,而Ti元素以化合物的形式弥散分布在焊缝中间部分的钎料层中试验发现,提高钎焊温度有利于Ni元素的扩散,在以Ni/Ti/Ni叠层、Ni元素含量低于50%时,提高钎焊温度至1 300℃得到的接头没有显著裂纹,中间层的钛化合物分布更加弥散.  相似文献   

20.
为丰富SiC陶瓷钎焊所用钎料的设计思路,提出了一种泡沫Ti/AlSiMg新型复合钎料,通过Ti元素的溶入提高钎料与SiC陶瓷之间的界面结合力,利用泡沫Ti与Al基钎料之间的界面反应获得原位增强的钎缝,从而提升接头力学性能. 采用钎焊温度700 ℃、保温时间60 min和焊接压力10 MPa进行SiC陶瓷真空钎焊,利用光学显微镜、扫描电镜、能谱分析、X射线衍射、电子探针和万能试验机对接头组织、成分和性能进行分析,探索泡沫Ti/AlSiMg复合钎料在SiC陶瓷钎焊中的可用性. 结果表明,填充泡沫Ti/AlSiMg复合钎料所得接头结构为SiC/Al/Ti(Al,Si)3/Ti(Al,Si)3原位增强Ti基钎缝/ Ti(Al,Si)3/Al/SiC,断裂发生在铝合金界面层和SiC陶瓷之间,Ti元素的溶入提高了铝合金界面层与SiC陶瓷之间的界面结合力,接头抗剪强度达111 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号