首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对传统的最小二乘支持向量机模型和粗糙集理论的研究,提出了一种基于粗糙集理论进行改进的最小二乘支持向量机预测技术,将粗糙集原理的属性约简与特征提取技术运用到输入指标的选取上,保留有用信息并剔除无用信息。最后,以美国PJM市场2012年1月至9月的日24点历史负荷为算例,对该时间段电力负荷进行模拟仿真。结果表明,经过粗糙集属性约简改进后的LS—SVM预测模型大大提高了其预测精度,拟合效果显著提高。  相似文献   

2.
大量分布式能源站的出现以及电动汽车的普及,给电力系统的安全、经济运行带来影响的同时,传统的负荷预测方法也面临挑战。针对这个问题,提出了利用鲸鱼算法优化最小二乘支持向量机(Whale Optimization Algorithm-Least Squares Support Vector Machine,WOA-LSSVM)进行短期电力系统负荷预测。利用鲸鱼算法全局寻优能力强、收敛速度快的优点,弥补最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)选参的盲目性,提高LSSVM的负荷预测精度。采用WOA-LSSVM对2013年浙江某地区历史负荷数据预测未来1 d的负荷,并与粒子群优化最小二乘支持向量机模型和标准LSSVM模型预测结果对比。结果表明,基于鲸鱼优化LSSVM的短期负荷预测具有较高的预测精度,相对误差较小。  相似文献   

3.
讨论了基于支持向量机的电力系统负荷预测模型建模方法.通过对模型结构的分析,提出了最小二乘支持向量机算法学习参数的选取方法.结合粒子群优化算法,给出了粒子群优化对最小二乘支持向量机系数优化选择的方法.采用某省的经济、人口、天气和电价等实证数据对几种预测方法进行比较分析,算例结果表明,所提出的方法可以加快计算速度,并有效提高预测精度.  相似文献   

4.
提出了一种基于小波变换和自适应加权最小二乘支持向量机(AWLS-SVM)的电力系统短期负荷预测方法。针对负荷变化具有拟周期性和随机性的特点,本方法先将负荷值利用小波变换分解为几个低频段的拟周期量和一个高频段随机量,然后根据各分量特点应用AWLS-SVM模型进行预测,最后小波重构各分量获得预测结果。实例预测结果表明该方法具有较高的预测精度。  相似文献   

5.
钢铁企业电力负荷作为电力负荷的重要组成部分,钢铁电力负荷的准确预测对于提高电力负荷预测精度具有重要意义。为了实现钢铁电力负荷的中长期预测,本文选取了经济因素和社会因素作为自变量,引入带有惯性权重的粒子群算法(WPSO)对传统的最小二乘支持向量机智能预测模型(LSSVM)参数进行优化,并利用某地区钢铁电力负荷样本数据进行验证,拟合结果显示,经过粒子群算法优化后的最小二乘智能向量机算法预测精度更高,收敛速度更快,具有良好的推广性和适应性。  相似文献   

6.
提出了一种希尔伯特-黄变换和自适应加权最小二乘支持向量机相结合的短期电力负荷预测方法。先利用HHT中的经验模态分解,将负荷值分解为几个低频段的拟周期量和1个高频段随机量,然后根据各分量瞬时频率特点选择最佳的AWLS-SVM模型预测,最后将各分量预测数据叠加。实例预测结果表明,该方法具有较高的预测精度。  相似文献   

7.
为了对热负荷及时准确的预测,采用最小二乘支持向量机(Least squares support vector machines,LSSVM)算法,结合网格搜索的交叉验证参数寻优建立预测模型。实验表明,与遗传算法参数寻优的SVM相比,计算速度提高27倍,均方误差提高3倍,拟合相关参数达到99%,说明该模型能快速准确的预测预测下一个工作日的短期热负荷,是一种可行的、有效的预测方法。  相似文献   

8.
支持向量机回归(Support Vector Machine Regression,SVR)作为供热预测领域的一种新型算法,普适性强,但预测精度在一定程度上受参数选择的影响。为提高预测精度,提出一种基于差分进化(Differential Evolution,DE)和灰狼优化(Grey Wolf Optimization,GWO)的混合算法(DE-GWO)对支持向量机的回归参数进行寻优。该算法首先利用DE的变异、选择维持种群的多样性,然后利用GWO的全局寻优能力搜索SVR的最优参数组合,并采用均方误差(MSE)、平均绝对百分比误差(MAPE)、平均绝对误差(MAE)和判定系数(R~2)对各种预测模型进行了评价。研究结果表明,DE-GWO-SVR预测模型的MAPE值为3.23%,优于SVR、DE-SVR、GWO-SVR模型,可为实际应用提供一定的参考。  相似文献   

9.
影响中长期负荷变化的因素较多,单一预测模型很难满足预测需要,组合预测能够较好地解决单一模型的缺点,借鉴单一预测模型的优点。提出贝叶斯框架下最小二乘支持向量机(LS-SVM)中长期负荷组合预测模型,利用结构化风险原则代替经验风险最小化,挖掘各单一预测模型的信息,以单一模型的预测数作为组合预测输入样本,通过贝叶斯后验理论确定最小二乘支持向量机参数,建立组合预测模型进行预测。通过算例表明,提出的模型具有较高的预测精度,能够较好地解决小样本下的预测问题,具有良好的泛化能力和预测精度。  相似文献   

10.
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单、泛化性能好、不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。  相似文献   

11.
《焦作工学院学报》2013,(3):327-331
应用最小二乘支持向量机进行短期负荷预测,为了体现离负荷预测点越远对负荷预测精度的影响越不明显,即"近大远小"的原则.对训练样本横向及纵向引入隶属度,并用留一法优化模型参数,实现参数的自适应选择,从而提高预测的精度.利用某区域电网最新的负荷数据进行仿真预测,并与不加权及其它的方法相比较.结果表明,所提出的方法与传统方法相比提高了预测的精度.  相似文献   

12.
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单、泛化性能好、不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。  相似文献   

13.
基于模糊支持向量机的电力系统中期负荷预测   总被引:1,自引:0,他引:1  
考虑到气温因素对电力系统负荷的影响,提出了一种模糊支持向量机(FSVM)算法,基于欧洲智能技术网络(EUNITE)竞赛数据进行了中期电力负荷预测的应用研究。首先利用隶属度函数对影响负荷的气温因素进行模糊化处理,然后结合已知数据得到支持向量机(SVM)的训练样本集,采用序列极小优化(SMO)算法实现对支持向量机(SVM)的快速训练,最终得到预测结果,并与不将气温模糊化的仿真结果进行比较,表明本文所提方法简便且预测精度较高。  相似文献   

14.
基于免疫算法优化LSSVM的短时交通流预测   总被引:2,自引:0,他引:2  
为了智能化解决城市道路交通系统存在的问题,提高短时交通流预测的准确性,采用免疫算法优化的最小二乘支持向量机(LSSVM)建立短时交通流量预测模型。利用免疫算法对LSSVM中的惩罚因子和核函数参数进行优化,得到最优预测模型。以车辆行驶平均速度和占有率作为模型输入,交通流量作为输出进行预测仿真试验。试验结果表明:本文采用的优化LSSVM模型进行仿真试验的预测误差有所减小,输出结果更接近真实值。  相似文献   

15.
16.
针对目前常用的基于神经网络的库存预测方法存在收敛速度慢或不收敛、存在局部极小值、网络结构选择具有随机性且对小样本库存预测容易出现过学习现象等问题,提出了基于最小二乘支持向量机的企业库存预测算法。通过结合某公司的库存实际计算以及与其他预测方法进行比较,通过仿真试验和实际数据验证,该算法计算简单,且具有更好适应性和很好的鲁棒性等特点。  相似文献   

17.
基于最小二乘支持向量机的数控机床热误差预测   总被引:3,自引:2,他引:3  
为实现数控机床热误差的补偿控制,提出基于最小二乘支持向量机进行数控机床热误差建模预测的方法.根据最小二乘支持向量机回归预测的原理,优化选择最小二乘支持向量机参数,对数控车床热误差进行最小二乘支持向量机建模.通过测量数控车床主轴温升值与主轴热变形量,将获得的数据进行最小二乘支持向量机建模训练,以建立机床热误差预测模型.实验结果表明,该模型能有效描述热动态误差,与最小二乘法建模进行比较,结果显示,基于最小二乘支持向量机的数控机床热误差预测模型精度高、泛化能力强;采用最小二乘支持向量机得到的预测模型可用于数控机床热误差实时补偿,以提高机床的加工精度.  相似文献   

18.
提出了一种基于支持向量机(Support Vector Machine,SVM)的城市电网空间负荷预测(Spatial Load forecasting,SLF)方法。该方法首先以等大小网格划分的规则生成元胞,并获取元胞历年负荷;然后将各元胞历年负荷最大值及其对应的年份输入支持向量机预测模型进行训练,其中采用粒子群优化(Particle Swarm Optimization,PSO)算法寻求预测模型的最优参数,预测各元胞目标年负荷最大值,从而实现空间负荷预测;最后对吉林市城市电网进行实例分析,结果验证了该方法的实用性和有效性。  相似文献   

19.
系统边际电价的影响因素复杂多变.构建了一种以小波函数作为核函数的最小二乘支持向量机算法模型,并成功预测了系统边际电价.算例仿真结果表明,该模型不仅具有良好的泛化能力,而且能有效地提高电价预测精度.  相似文献   

20.
根据小区用电数据特征,提出了一种基于用电影响因素回归的小区用电预测模型。居民用电量影响因素分为可预知因素和不可预知因素,可预知因素利用pearson积矩相关系数计算所对应用电量的偏相关系数。并用0.618优选算法选取最优可预知因素。不可预知因素通过可预知因素偏相关系数分配权重,最后利用最小二乘支持向量机得到预测模型回归方程。以某小区日用电量进行实际预测为例,通过与其他模型的比较,验证该小区用电预测模型在小区用电预测的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号