首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶剂挥发法制备盐酸乌拉地尔PLLA微球并通过SEM对其结构进行了表征,同时对微球的包封率和药物释放进行了测试。通过有机相加入乙醇或外水相加入盐的方法可以提高微球对药物的包封率。结果表明,当无水乙醇与三氯甲烷的比为1:2时,制得的微球包封率最高,达到30.52%。外水相中加入盐类电解质的方法也能提高药物的包封率。盐的加入使得盐酸乌拉地尔在外水相的溶解度降低,减少了药物向外水相的泄漏,从而提高了药物的包封率。其中KCl的加入对药物包封率的影响最大。当KCl浓度达到0.4%(mol)时,微球的包封率最高,达到35.52%。体外药物释放结果表明,PLLA微球具有明显的缓释作用,其释药动力学满足Higuchi方程。  相似文献   

2.
全军  李学强  魏梦雪 《广州化工》2020,48(3):30-31,60
盐酸帕洛诺司琼是5-HT3受体拮抗剂,临床用于治疗由化疗、放疗引起的恶心、呕吐等副作用。目前有盐酸帕洛诺司琼的合成路线有两条,其中一条路线制得的盐酸帕洛诺司琼的总收率为12. 9%,另一条的制备的盐酸帕洛诺司琼的总收率为13. 9%。本文对盐酸帕洛诺司琼合成工艺进行了优化和改进。针对关键中间体四氢奈甲酸酰胺奎宁(I)的合成,在反应体系中加入三乙胺作为缚酸剂,使产物(I)的收率由原工艺路线的50. 4%提高到60. 1%,总产率由原来的的13. 9%提高到16. 2%,生产成本明显降低。  相似文献   

3.
采用快速膜乳化技术结合溶剂蒸发法制备以生物可降解聚乳酸-羟基乙酸(PLGA)为载体的胸腺法新载药微球,考察了PLGA分子量、油相中PLGA和乳化剂浓度、外水相pH值和内水相体积等对微球包埋率和粒径的影响. 结果表明,制备粒径均一的PLGA载药微球的优化条件为:PLGA分子量51 kDa,油相中PLGA和乳化剂浓度为100和10 g/L,内水相体积0.5 mL,外水相pH值为3.5. 该条件下所制载药微球粒径均一性好(Span<0.7),药物包埋率高达80%以上,突释率24 h内低于20%,线性持续稳定释药时间长达30 d.  相似文献   

4.
重组α-2b干扰素缓释微囊制备工艺及体外释药过程研究   总被引:1,自引:1,他引:0  
以聚乳酸乙醇酸(PLGA)为囊材,对制备a-2b干扰素缓释微囊的工艺条件进行优化,研究了不同PLGA浓度、搅拌速度和搅拌时间对缓释微囊粒径分布、载药量、包封率和体外释药过程的影响。结果显示,在PLGA浓度为0.7gmL-1,搅拌速度2100rmin-1,搅拌时间4min条件下,制备的微囊平均粒径为2.8721m ,表面平滑、形态规整且不聚集,载药量为3.91%,包封率为85.8%,体外可连续释药10天,没有明显突释效应,释药量达93.3%,符合临床药用标准。  相似文献   

5.
首次以头孢吡肟为球心物质,聚乙烯吡咯烷酮(PVP)为分散剂,采用溶剂挥发法制备了聚(乳酸-羟基乙酸)共聚物PLGA载药微球。透射电镜、光学显微镜测试表明微球球型规则,表面平滑,分布均匀,微球粒径在400nm左右,包覆效果良好,微球栽药率为6.50%,药物包封率为35.75%。经红外光谱(FT—IR)分析得知,两种物质互相融为一体。以pH=7.4的PBS缓冲溶液为释放介质,用紫外分光光度计(UV)对微球的体外释药过程进行了实验,微球在前10d有明显的突释,此后缓慢释药,最终药物释药率达65.30%以上。实验结果表明:PLGA是一种理想的控缓释材料。  相似文献   

6.
PLGA缓释微球的制备及其释药降解性能研究   总被引:1,自引:0,他引:1  
以巴比妥为球心物质,聚乙烯吡咯烷酮(PVP)为分散剂,采用溶剂挥发法制备了聚(乳酸-羟基乙酸)共聚物PLGA载药微球。透射电镜、光学显微镜测试表明微球球型规则,表面平滑,分布均匀,微球粒径在400nm左右,包覆效果良好,微球载药率1.039%,药物包封率42.34%。红外(FT—IR)分析得知,两种物质互相融为一体。以PH=7.4的PBS缓冲溶液为释放介质,用紫外分光光度计(UV)对微球的体外释药过程进行了实验,微球在前10天有明显的突释,此后缓慢释药,45天后药物释药率在80%以上。实验结果表明:PLGA是一种理想的控缓释材料。  相似文献   

7.
以壳聚糖-海藻酸钠为囊材,采用乳化-外部凝胶法制备猪脾脏转移因子壳聚糖-海藻酸钠微囊,并研究了其粒径、载药量、包封率、体外释药等性质. 结果表明,经优化工艺所制微囊球形度良好,平均粒径11.05 mm,平均载药量11.60 mg/g,平均包封率60.8%,在磷酸缓冲液(pH=7.4)中的释药曲线方程为ln(1-Q)=-0.0692t-0.6449 (R2=0.9876),符合一级动力学方程. 该制备工艺简单,所制猪脾脏转移因子微囊具有良好的溶胀性能和缓释性能.  相似文献   

8.
快速膜乳化法制备粒径均一的PLGA微球和微囊   总被引:5,自引:3,他引:2  
以聚(乳酸-羟基乙酸)(PLGA)为膜材,采用快速膜乳化结合溶剂萃取法制备了胰高血糖素样肽-1(GLP-1)微囊,研究了PLGA分子量对药物装载率、药物活性和体外释放行为的影响. 制备均一微球的优化条件为过膜压力1000 kPa,过膜次数3次,外水相稳定剂聚乙烯醇浓度19 g/L,油水体积比1:5. 在此条件下,制备了粒径350 nm左右、多分散系数小于0.050的载GLP-1的PLGA微囊,GLP-1包埋率达65%以上,活性保留达85%以上,药物体外释药可达20 d.  相似文献   

9.
樊安  王君  张粉艳  韦雄雄 《化学工程》2014,42(10):64-68
为了改善聚乳酸(PLLA)的组织相容性及细胞亲和性,提高盐酸乌拉地尔生物利用率,文中在催化剂4-(二甲胺基)吡啶与N,N'-二环己基碳酰亚胺共同作用下,将含亲水基团的碱性聚电解质壳聚糖(CS)与PLLA共聚,制备了聚乳酸-壳聚糖接枝共聚物(PLCS),采用溶剂挥发法制备盐酸乌拉地尔PLCS微球并对其结构进行了表征,同时对微球的包封率和药物释放进行了测试。通过有机相加入乙醇的方法可以提高微球对药物的包封率。结果表明,当无水乙醇与三氯甲烷的体积比为1∶2时,制得的微球包封率最高,达到34.86%。体外药物释放结果表明,PLCS微球具有明显的缓释作用,其释药动力学满足Higuchi方程。  相似文献   

10.
采用快速膜乳化法制备了聚(乳酸-羟基乙酸)(PLGA)微球,得到制备PLGA微球的优化条件为:过膜压力5 kPa,水相中PVA浓度19 g/L,油/水相体积比1:10,该条件下所制空白微球的平均粒径约为24 mm,粒径分布系数Span<0.7. 在此基础上制备载生长激素释放肽-6(GHRP-6)微球,油相乳化剂浓度2.5 g/L、外水相中NaCl浓度10 g/L条件下所制载GHRP-6微球包埋率最高可达85%,初乳制备方式对药物包埋率及体外释放行为均有较大影响,超声法制备的初乳所得微球内部结构紧密,药物包埋率较高(85%),但释药缓慢;而均质法制备的初乳所得微球内部结构疏松,药物包埋率较低(76.8%),但在体外释放更完全.  相似文献   

11.
以聚乳酸-基乙酸共聚物(PLGA)和纳米羟基磷灰石(nHA)作为生物降解材料制备了药物替莫唑胺(Temozolomide,TMZ)的缓释系统.采用湿法化学工艺制备了球状和棒状的nHA粉末.将TMZ药物分子负载在nHA表面(nHA-TMZ),再通过乳化溶剂挥发法将nHA-TMZ包裹在PLGA微球中,同时研究了微球中nHA的形貌和含量对缓释微球物化性能的影响.用扫描电镜、紫外分光光度计分别测定了微球的结构、形貌、药物包封率和缓释行为.相比于不含有nHA的TMZ/PLGA缓释微球,nHA的介入能够显著提高药物的包封率,并且包封率与nHA的加入量有关.此外,药物释放实验表明包裹在微球中的nHA的形貌和溶解速率能够影响微球的缓释行为.  相似文献   

12.
目的制备槲皮素纳米脂质体(Quercetin nano-liposomes,Que-LPs),并对其理化性质进行考察。方法采用乳化溶剂挥发法制备Que-LPs,Box-Behnken效应面法筛选最优处方。并对Que-LPs形态、Zeta电位、粒径及粒度分布、包封率、载药量进行研究。透析法测定制剂体外释药行为。结果制备的Que-LPs多呈类球形、大小比较均匀、表面圆整,粒径均在109.4 nm左右,粒度分布呈单峰,Zeta电位(-40.6±0.11)m V,其包封率为(87.93±1.03)%,载药量为(6.40±0.08)%,体外释放48 h时药物累积释放56.93%,且呈缓释现象,符合双相动力学方程。结论乳化溶剂挥发法适用于制备Que-LPs,纳米粒在溶液中分散均匀且稳定性良好。制备工艺安全可靠、稳定可行。体外释放呈现前期快速释药,后期缓慢释药的特征,与原料药相比有明显缓释作用。  相似文献   

13.
为了提高抗癌药物5-氟脲嘧啶(5-FU)对肿瘤细胞的靶向性及选择性,采用超声-透析法制备了具有pH敏感性的纳米药物载体5β-胆烷酸/O-羧甲基壳聚糖/磺胺地托辛(5β-CHA/OCMC/SDM)自组装水凝胶纳米粒,并用同样的方法将5-FU包载于纳米载体中进行体外释放研究。利用紫外分光光度计于269nm波长下检测5-FU的载药量和包封率以及释放浓度。结果表明,对于5β-CHA/OCMC/SDM纳米粒,药载比(药物和载体的质量比)增加到0.6时,载药量和包封率分别高达51.3%和85.4%。体外释药结果表明,在pH=7.4(人体正常组织的pH值)的磷酸盐缓冲溶液中,接枝5β-CHA的OCMC水凝胶纳米粒对5-FU具有良好的缓释效果,且随接枝量的增加缓释效果增强。pH6.8(肿瘤组织的pH值)时,接枝SDM的载药纳米粒迅速聚集并强烈释放,表现出良好的pH敏感性。  相似文献   

14.
利用脂质体为药物载体,制备抗癌药盐酸托泊替康脂质体,并进一步探究影响盐酸托泊替康脂质体包封率的因素,筛选得到较优的制备工艺。以HSPC、DSPE-MPEG和Chol为包封材料,采用主动载药法—硫酸铵梯度法进行脂质体的制备,研究空白脂质体的pH、硫酸铵浓度、药磷比和孵育时间对盐酸托泊替康脂质体包封率的影响。空白脂质体的pH和孵育时间对包封率无显著影响,硫酸铵浓度为0.35 mol·L-1,API/P=3.5,空白脂质体pH=5.0,包封率>95%。硫酸铵浓度和药磷比为影响盐酸托泊替康脂质体包封率的最主要因素,两者可进一步提高盐酸托泊替康脂质体的包封率。  相似文献   

15.
为了增加紫杉醇溶解度和稳定性,采用薄膜分散法制备紫杉醇纳米胶束;采用粒径测定仪测定粒径和PDI;采用UV法测定药物的含量,计算载药量和包封率;采用膜透析法对载药聚合物胶束的体外释药进行考察。本研究制备的纳米胶束粒径分布均匀,平均粒径为(64.34±1.83)nm,包封率大于85%;紫杉醇纳米胶束体外释放显示了良好的缓释特性。本研究制备的紫杉醇纳米胶束制备工艺操作简单,制备得到载药胶束的粒径较小且分布均匀,包封率、载药量较高。  相似文献   

16.
应用高分子有机化合物聚乳酸-羟基乙酸共聚物[Poly(lactide-co-glycolide),PLGA]作为成膜材料包载三七皂苷R1制备纳米微球并寻求最优制备条件。采用复乳-溶剂挥发法制备纳米微球,使用高效液相色谱仪、激光粒度分析仪,测定包封率及粒径。采用正交实验设计,对影响包封率及粒径的因素分别进行五因素四水平正交实验。在PLGA浓度10mg/m L,内水相∶油相体积比为3∶10,外水相与初乳体积比为10∶1,第一次超声乳化时间10s,第二次超声乳化时间90s的条件下制备的微球包封率最为理想。若要获得最小粒径,则优化实验条件为:PLGA浓度20mg/m L,内水相∶油相体积比为2∶5,外水相与初乳体积比为2∶1,第一次超声乳化时间10s,第二次超声乳化时间120s。以PLGA为外壳材料可制备携三七皂苷R1纳米微球,并能获得其包封率及粒径制备的最优化条件。  相似文献   

17.
以自制的羧甲基壳聚糖-油酸聚合物(CMCS-OA)为载体,采用透析法对盐酸阿霉素(DOX)进行包载,载药聚合物(DOX-CMCS-OA)的载药量和包封率分别达到30.28% 和65.83%.体外释药实验表明,DOX-CMCS-OA在pH值为5.0和7.4下1660 min时累积释药率分别为262.29% 和232.64...  相似文献   

18.
甲氨蝶呤囊泡的制备和体外释放性能研究   总被引:4,自引:0,他引:4  
用非离子表面活性剂和胆固醇为原料,采用薄膜分散法制备甲氨蝶呤囊泡,通过透析法分离未包封的药物,紫外分光光度法测定包封率和体外释药性。结果显示,Span 60与胆固醇形成的囊泡(VSpan 60∶VCHOL=5∶3),在50℃超声40 m in的条件下,对0.60 g/L的甲氨蝶呤包封率可达65%以上,在模拟胃流体和模拟肠流体中均有良好的缓释作用。  相似文献   

19.
利用层层组装法合成了羧甲基-β-环糊精修饰的Fe_3O_4纳米粒,以疏水型药物左旋咪唑(LMS)为模型药物,制备了载药纳米粒并对其细胞毒性和体外释药特性进行考察。利用IR、XRD、TEM、Zeta电位与激光粒度仪等对材料进行结构形貌表征,利用UV法测定载药纳米粒的载药量和包封率并进行体外释放药物左旋咪唑性能研究,采用MTT法评价材料的细胞毒性。结果表明,羧甲基-β-环糊精成功地接枝到四氧化三铁纳米粒上,粒径大小为22. 4 nm左右,呈球状或椭圆状,磁性良好。当载体与药摩尔比为1∶1时,对左旋咪唑的载药量和包封率分别为(14. 32±0. 24)%和(42. 38±0. 35)%,复合材料对MCF-7细胞无毒,载药纳米粒在缓冲溶液中具有较好的缓释效果。  相似文献   

20.
目的制备可生物降解的具有降血脂作用的非诺贝特聚合物载药微球。方法通过复乳溶剂-挥发法制备非诺贝特缓释微球,表征其形态、粒径,并计算其载药量、包封率:用磷酸盐7.4的磷酸盐缓冲液在37℃溶解微球,并在不同的时间段在286 nm处测得其峰面积,绘制保准曲线,计算累计释放量。通过红外和差示热量扫描法显示其药物化学结构未发生改变。结果微球表面形貌光滑、完整,粒径分布均匀,平均粒径在1μm呈正态分布较好,其包封率在(89.46±0.54)%,载药量为(18.39±0.48)%,随着微球的降解,其缓释作用可以持续12天。结论通过复乳-溶剂挥发法制备的载非诺贝特PLGA缓释微球形态规整,分散性良好,并且能在12天内实现缓控释放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号