首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以CeO_2作为载体,合成了含有更多金属活性位点的钴镍双金属催化剂,并用于催化甲烷二氧化碳重整反应的研究。为了深入探讨双金属催化剂中钴和镍之间的作用机制,通过改变两种活性金属钴和镍的加入顺序,分别合成了Co-Ni/CeO_2、Ni-Co/CeO_2和Ni Co/CeO_2催化剂。与单金属催化剂对比,研究了Co的加入对镍基催化剂的影响,并确认了双金属催化剂中Co与Ni存在的状态和加入顺序对催化剂催化性能的影响。  相似文献   

2.
利用Co(NO_3)_2、CoCl_2和Co(CH_3COO)_2为钴源,通过水/溶剂热法或沉淀法制备出了形貌可控的Co_3O_4立方体、纳米棒、八面体、六角片四种纳米晶体材料,以它们为载体负载Pt制备催化剂,研究了不同形貌Co_3O_4负载Pt催化剂的硝基苯液相加氢性能。  相似文献   

3.
以六水氯化钴、氢氧化钠及氨水为原料,在室温且不使用表面活性剂的条件下制备了纳米花状α-Co(OH)_2球形颗粒;用X射线衍射仪(XRD)、红外光谱仪(FT-IR)和场发射扫描电子显微镜(FESEM)表征了α-Co(OH)_2纳米花的组分、结构和形貌,用差示扫描量热仪(DSC)研究了α-Co(OH)_2纳米花对高氯酸铵(AP)热分解性能的影响。结果表明,α-Co(OH)_2为球形颗粒,粒径大小均一,是由纳米片组成的花状结构,纳米花的直径为300~400nm;当α-Co(OH)_2纳米花质量分数为3%时,AP的分解温度为281℃,与纯AP相比提前了158℃,放热量达1 502J/g,表明α-Co(OH)_2纳米花对AP的热分解具有优异的催化作用。  相似文献   

4.
本研究以氧化石墨烯(GO)为模板负载氢氧化镍(Ni(OH)_2)和氢氧化钴(Co(OH)_2)纳米粒子,并分别熔融共混到聚丙烯(PP)中,利用PP原位碳化方法成功制备出GO负载碳球纳米杂化材料。利用X射线衍射(XRD)和拉曼波谱分析(Raman)对合成的Ni(OH)_2、Co(OH)_2、GO负载Ni(OH)_2和GO负载Co(OH)_2进行表征。采用透射电子显微镜(TEM)、XRD和Raman等对合成的石墨烯负载碳球纳米杂化材料的形貌结构和物理性质进行表征。结果表明:利用PP原位碳化可成功制备两种不同类型的石墨烯负载碳球纳米杂化材料。  相似文献   

5.
氨分解制氢清洁高效,易于工业化使用,是一种极具前景的便携式制氢方法。镍作为氨分解非贵金属催化剂中性能最好、应用最广的催化剂,但仍存在低温活性低、易烧结等问题亟需改进。本文概括了氨分解反应的反应机理、动力学和热力学,综述了近年来国内外氨分解镍基催化剂的研究现状。研究者从镍金属活性中心调控出发进行研究,发现调节镍粒子尺寸、加入第二金属(Fe、Co、Mo等)、载体(Al2O3、SiO2、分子筛等)、助剂(碱土金属、稀土金属等)以及设计核壳结构进行调控,可提高镍金属的分散性和抗烧结能力。本文在以上基础上提出了镍基催化剂的改进措施和未来发展方向,以期为进一步设计出低温高活性镍基催化剂提供依据。  相似文献   

6.
《化学试剂》2021,43(11):1473-1479
采用一步还原法制备了一系列双金属纳米Pd基合金催化剂,以获得优秀的乙炔双羰化反应催化剂。利用透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、X-射线衍射(XRD)、原位红外光谱(In-situ IR)等手段对催化剂的性质进行了研究。考察了掺杂金属、溶剂、助剂种类及用量、一氧化碳压力、温度对反应产率的影响。结果表明:以乙腈为溶剂,乙炔、一氧化碳和甲醇为原料合成丁烯二酸二甲酯,Co/Pd双金属纳米催化剂的活性最高,在低温低压条件下丁烯二酸二甲酯的总产率可达97.99%。Co元素的引入,有助于降低Pd对一氧化碳吸附强度,使更多的吸附于催化剂表面的CO分子能参与反应,提高了Pd基纳米双金属催化剂催化乙炔双羰化反应的活性。  相似文献   

7.
以钛酸正丁酯作为钛源,无水氯化钙作为钙源,采用水热法制备了CaTi_2O_4(OH)_2纳米片。借助于X射线衍射(XRD)、扫描电子显微镜(SEM)、BET和紫外-可见光谱(UV-Vis)分别对产物的物相组成、样品形貌和光学性能进行分析。以罗丹明B为降解对象,分析添加不同浓度的聚丙烯酸钠对CaTi_2O_4(OH)_2光催化性能的影响。结果表明:采用水热法,CaTi_2O_4(OH)_2沿(040)、(251)方向取向生长,当加入聚丙烯酸钠的添加量为1%到3%时,CaTi_2O_4(OH)_2纳米片尺寸逐渐减小,当聚丙烯酸钠加入量继续增加大于3%时,CaTi_2O_4(OH)_2纳米片又逐渐增大。当添加3%的聚丙烯酸钠时,所制备CaTi_2O_4(OH)_2样品的光催化性能最优,对罗丹明B的降解率达到92.7%。这是由于该纳米片尺寸最小,结晶度最高和光的利用率最大所致。  相似文献   

8.
管式固体氧化物燃料电池(t-SOFC)具有易于担载催化剂、易封接等优点。本文开发了Ni O-YSZ阳极支撑型t-SOFC,测试了其分别以氢气和氨气为燃料时的电化学性能。800℃,以氨气为燃料时,电池的最大功率密度略低于氢气。阻抗谱的弛豫时间分布(DRT)分析表明电池性能与氨气的分解和三相界面的离子交换有关。通过浸渍Co-Ni(3:1)纳米催化剂,800℃时氨燃料电池功率密度可提升至159.1m W/cm2,同时稳定性有所改善。  相似文献   

9.
以Mn和M(Ce、Cu、Co)的氧化物为活性组分、TiO2-Al2O3(TA)为载体,分别制备了3种不同Mn/M物质的量之比的双金属负载型Mn-M-O/TA催化剂。在连续超临界水氧化装置上及460℃、26 MPa、停留时间4~5 s和氧化剂剂量为化学剂量3倍的条件下,考察了各催化剂对氨的降解活性,结果表明Mn-Cu-O/TA催化剂具有较好的氨降解性能,Mn-Cu-O/TA-55催化剂氨转化率为55.8%。采用XRD、XPS、TPR等方法对Mn-M-O/TA催化剂进行了表征,添加铜后催化剂还原性能的提高,有利于氨转化率的提高。  相似文献   

10.
采用化学共还原法制备聚乙烯吡咯烷酮(PVP)稳定的Pt/Co和Pt/Ni双金属纳米溶胶,采用UV-Vis、TEM等对所合成的Pt/Co和Pt/Ni双金属纳米溶胶进行表征,研究了化学组成对双金属纳米溶胶催化剂催化NaBH4水解制氢的影响. 结果表明,所制双金属纳米溶胶的平均粒径约为2.0 nm,双金属纳米溶胶的催化能力高于单金属Pt, Co, Ni纳米溶胶,Pt/Co和Pt/Ni双金属纳米颗粒优异的催化性能可归因于电荷转移效应,Co或者Ni原子与Pt原子之间发生的电荷转移效应使得Pt原子带负电而Co或者Ni原子带正电,荷电的Pt和Co、Ni原子成为催化反应的活性中心,促进了催化反应的进行.  相似文献   

11.
将具有法拉第赝电容但导电性较差的材料与具有良好导电性的石墨烯结合是提高超级电容器电极材料电容性能的合理策略。以水热法制备的Ni(OH)_2/石墨烯复合材料与生长有Co(OH)_2的泡沫镍制得修饰电极。用循环伏安法(CV)、恒电流充放电(CP)和电化学阻抗(EIS)测试了其在6 mol/L KOH溶液中的电容行为。实验表明,片状六边形Ni(OH)_2插入薄膜状石墨烯片层间,Ni(OH)_2/石墨烯/Co(OH)_2电极材料有良好的电容性能,在电流密度为1 A/g时比电容量达到了294 F/g,能量密度为36.75 Wh/kg。充放电循环1 000圈后比电容值仍是初始电容的92.7%。  相似文献   

12.
《广州化工》2021,49(2)
采用常温溶剂热法合成沸石型咪唑盐骨架材料ZIF-67和ZIF-8,并控制钴锌摩尔比合成ZIF-67@ZIF-8,得到以高石墨化碳为核,氮掺杂碳为壳的纳米多孔杂化碳材料。以氨分解制氢为反应模型,通过XRD与TEM对结构进行表征。研究表明,由于ZIF材料的核壳特性,Ru-CS-Co/CN(1)在性能测试中测得活化能(Ea)为45.91 kJ/mol,分解率为92.61%。相比于单金属钌催化剂,多孔碳负载Ru-Co双金属催化剂在较低温度区(425~500℃)的氨分解性能提高,能大幅降低活化能与反应温度。  相似文献   

13.
我们以钛酸丁酯和可溶性盐Co(NO_3)_26H_2O为原料,采用共沉淀法于室温条件下制备了金属离子Co(Ⅱ)掺杂的二氧化钛纳米催化剂,并选用苯乙烯的液相环氧化反应作为探针反应,以此来评价该催化剂Co(Ⅱ)-TiO_2的性能。  相似文献   

14.
本文采用便捷绿色的电化学交流电法以金属钴为前驱体合成了Co(OH)_(0.225)(SO_4)_(0.925)/Co_3O_4复合物。扫描电子显微镜及透射电子显微镜表征说明其形貌为纳米颗粒,XRD表征说明其物相为正交Co(OH)_(0.225)(SO_4)_(0.925)和立方Co_3O_4的混合物。该材料应用于超级电容器具有较好的电化学性能。  相似文献   

15.
本文在2.3 V电压、30 mA电流、120 s沉积时间条件下,采用控电位电沉积方法在泡沫镍基体上沉积Co(OH)_2制备了复合电极材料并研究了其超电容性能。结果表明:所获得的复合电极材料表面为纳米片层状Co(OH)_2,且保留了泡沫镍的三维网状结构。这一结构促进了电极活性物质与电解液之间的充分接触以及离子在电极体相中的吸附与脱附,使复合材料具有优异的超电容特性,比电容值高达975.8 F/g(50 mV/s),内阻仅为0.74Ω。  相似文献   

16.
纳米Mg(OH)_2(氢氧化镁)是一种聚合物用环保高效无卤阻燃剂,但采用常规法制得的纳米Mg(OH)_2因极易团聚而分散性较差。以氧化镁/HCl(盐酸)制备的氯化镁、NH_3·H_2O(氨水)和NaOH(氢氧化钠)为原料,在PEG(聚乙二醇)存在的情况下,采用水热法合成了3种不同尺寸的纳米片状Mg(OH)_2。研究结果表明:所得产物均为纳米片状结构,并且均具有较强的光致发光特性,而且1 mol/L NaOH/Mg(OH)_2、1 mol/L NH_3·H_2O/Mg(OH)_2、2 mol/L NH_3·H_2O/Mg(OH)_2的厚度分别为20、10、6 nm;随着纳米Mg(OH)_2片层厚度的减小,其表面极性增强,发射峰位置红移,发射峰强度减弱。  相似文献   

17.
采用浸渍-液相还原法,分别制备了纳米Co、Ni、Mn催化剂,以泡沫镍为集电体,以不同材料作为载体制备电极。采用极化曲线测试了不同催化剂对联氨氧化的催化性能。结果表明,Co和Ni对联氨氧化有明显的催化效果,而Mn基本没有催化效果,Co和Ni相比较,在-0.8 V电位下,Co的电流密度为175 mA/cm2,Ni的达到250 mA/cm2,可见Ni对联氨的氧化反应有较好的催化作用。同时,Vulcan XC-72作为催化剂载体更有助于提高催化剂性能。  相似文献   

18.
为了研究载体性质对Ru负载型催化剂的CO2加氢合成甲酸反应性能的影响,制备了以Al2O3纳米棒和γ-Al2O3为载体的一系列Ru基催化剂,采用透射电镜(TEM)、X射线衍射(XRD)、D2/OH交换和程序升温还原(H2-TPR)等方法详细表征催化剂的性质,并考察CO2加氢制甲酸的反应性能。结果表明:与传统Ru/Al2O3催化剂相比,以Al2O3纳米棒为载体时,Ru Ox物种在载体表面的分散程度高,Al2O3纳米棒的表面OH数目多,有利于提高催化剂的反应活性,另外当Ru在Al2O3纳米棒上的负载量(质量分数)为1%时,甲酸产量最高可以达到11.7mmol/h。  相似文献   

19.
采用等体积浸渍法结合NH3程序升温氮化制备出一系列负载型金属Co、Mo氮化物催化剂。并利用XRD、TPD-MS和H2-TPR及氨分解活性测试等手段,考察了载体[Mg(Al)O、MgO和γ-Al2O3]对负载型金属氮化物的表面形态及组成的影响。结果表明,(1) 负载催化剂的氨分解速率远远高于非负载的催化剂;(2) 氮的脱附峰可以归为以下三类:a.吸附态的NHx分解;b.氮化物结构转变;c. β-Mo2N0.78和Co2Mo3Nx 还原成Co和Mo金属;(3) 载体表面的酸碱性和孔结构对其负载的金属氮化物的催化活性和表面形态及化学组成有重要的影响,镁铝复合氧化物MgAlO[n(Al)∶n(Mg)=1∶3]为载体的钴钼双金属氮化物对于氨分解反应具有最好的催化活性。  相似文献   

20.
在还原过程中,非负载型钴基催化剂堆积孔结构容易坍塌,从而使金属钴的比表面积大幅降低,活性中心暴露的数量减少。作者采用简单的水热法制备了Co(OH)2/Co3O4混合物相的非负载型钴纳米颗粒催化剂,用于费托合成反应性能研究。结果表明:相比于单一物相的Co(OH)2或Co3O4催化剂,混合物相的催化剂显示出更高的费托合成反应活性。XRD、TEM、BET、H2-TPR等表征方法揭示出Co(OH)2与Co3O4具有不同的还原性质,两者紧密结合有利于催化剂在还原后维持更大的比表面积,进而有利于更多活性位点暴露,显著提高催化剂的反应活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号