首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isotactic polypropylene (i‐PP) microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning apparatus developed in our laboratory. The CO2 laser‐thinning apparatus could wind up the obtained microfiber in the range of 100 m min?1 to 2500 m min?1. The diameter of the microfiber decreased and its birefringence increased with increasing winding speed. When the microfiber obtained by irradiating the CO2 laser operated at a power density of 31.8 W cm?2 to the original fiber supplied at 0.30 m min?1 was wound at 1,387 m min?1, the obtained microfiber had a diameter of 3.5 μm and a birefringence of 25 × 10?3. The draw ratio calculated from the supplying and the winding speeds was 4,623‐fold. The SEM photographs showed that the obtained microfibers had a smooth surface without a surface roughened by a laser‐ablation and were uniform in diameter. The wide‐angle X‐ray diffraction photographs of the microfibers wound at 848 and 1,387 m min?1 showed the existence of the oriented crystallites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 27–31, 2006  相似文献   

2.
Poly(L-lactic acid) (PLLA) microfibers were obtained by a carbon dioxide (CO2) laser-thinning method. A laser-thinning apparatus used to continuously prepare microfibers was developed in our laboratory; it consisted of spools supplying and winding the fibers, a continuous-wave CO2-laser emitter, a system supplying the fibers, and a traverse. The laser-thinning apparatus produced PLLA microfibers in the range of 100-800 m min−1. The diameter of the microfibers decreased as the winding speed increased, and the birefringence increased as the winding speed increased. When microfibers, obtained through the laser irradiation (at a laser power of 8.0 W cm−2) of the original fiber supplied at 0.4 m min−1, were wound at 800 m min−1, they had a diameter of 1.37 μm and a birefringence of 24.1×10−3. The draw ratio calculated from the supplying and winding speeds was 2000×. The degree of crystal orientation increased with increasing the winding speed. Scanning electron microscopy showed that the microfibers obtained with the laser-thinning apparatus had smooth surfaces not roughened by laser ablation that were uniform in diameter. The PLLA microfiber, which was obtained under an optimum condition, had a Young's modulus of 5.8 GPa and tensile strength of 0.75 GPa.  相似文献   

3.
A high temperature zone‐drawing method was applied to a nylon 66 microfiber, obtained by using CO2 laser‐thinning, to develop its mechanical properties. The microfiber used for the high temperature zone‐drawing was prepared by winding at 150 m min?1 the microfiber obtained by irradiating the laser at 4.0 W cm?2 to an original fiber with a diameter of 50 μm, and had a diameter of 9.6 μm and a birefringence of 0.019. The high temperature zone‐drawing was carried out in two steps; the first drawing was carried out at a temperature of 230°C at supplying and winding speeds of 0.266 and 0.797 m min?1, the second at 250°C at supplying and winding speeds of 0.266 and 0.425 m min?1, respectively. The diameter of the microfiber decreased, and its birefringence increased stepwise with the processing. The high temperature zone‐drawn microfiber finally obtained had a diameter of 4.2 μm, a birefringence of 0.079, total draw ratio of 4.8, tensile modulus of 12 GPa, and tensile strength of 1.0 GPa. The wide‐angle X‐ray diffraction photograph of the drawn microfiber showed the existence of highly oriented crystallites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 42–47, 2006  相似文献   

4.
An isotactic polypropylene hollow microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning method. To prepare the hollow microfiber continuously, the apparatus used for the thinning of the solid fiber was improved so that the laser can circularly irradiate to the hollow fiber. Original hollow fiber with an outside diameter (OD) of 450 μm and an internal diameter (ID) of 250 μm was spun by using a melt spinning machine with a specially designed spinneret to produce the hollow fiber. An as‐spun hollow fiber was laser‐heated under various conditions, and the OD and the ID decreased with increasing the winding speed. For example, when the hollow microfiber obtained by irradiating the CO2 laser to the original hollow fiber supplied at 0.30 m min?1 was wound up at 800 m min?1, the obtained hollow microfiber had an OD of 6.3 μm and an ID of 2.2 μm. The draw ratio calculated from the supplying and the winding speeds was 2667‐fold. The hollow microfibers obtained under various conditions had the hollowness in the range of 20–30%. The wide‐angle X‐ray diffraction patterns of the hollow microfibers showed the existence of the highly oriented crystallites. Further, the OD and ID decreased, and the hollowness increased by drawing hollow microfiber obtained with the laser‐thinning. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2600–2607, 2006  相似文献   

5.
Akihiro Suzuki  Mahomi Kishi 《Polymer》2007,48(9):2729-2736
Poly(ethylene terephthalate) (PET) nonwoven fabric was prepared from microfibers obtained by using a carbon dioxide laser-thinning method. The PET nonwoven fabric obtained was made of the endless mircofibers with a uniform diameter without droplets. The fiber diameter can be varied by controlling airflow rate into the air jet and supplying speed of an original fiber into a laser-irradiating point. The fiber diameter decreased, and its birefringence increased as the airflow rate increased and the supplying speed decreased. When the microfiber prepared by irradiating the laser operated at a power density of 4.8 W cm−2 to the original fiber supplied at Ss = 0.15 m min−1 was dragged at an airflow rate of 30 L min−1, the thinnest microfiber with a diameter of 3.6 μm was obtained.  相似文献   

6.
A zone‐drawing and zone‐annealing method was applied to a poly(ethylene terephthalate) microfiber, obtained by using CO2 laser thinning, to develop its mechanical properties. The microfiber used for the zone drawing and zone annealing was prepared by winding at 1386 m/min the microfiber obtained by irradiating the laser at 18.1 W/cm2 and had a diameter of 2.8 μm and a birefringence of 0.097. Zone drawing was carried out at a drawing temperature of 105°C under an applied tension of 53 MPa, and zone annealing at an annealing temperature of 155°C under 195 MPa applied tension. Zone drawing and zone annealing were carried out at a treatment speed of 0.21 m/min. The diameter of the microfiber decreased, and its birefringence increased, with zone drawing and zone annealing. The zone‐annealed microfiber finally obtained had a diameter of 2 μm, a birefringence of 0.234, a tensile modulus of 17.9 GPa, and a tensile strength of 1.1 GPa. The wide‐angle X‐ray diffraction photograph of the zone‐annealed microfiber showed the existence of highly oriented crystallites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2989–2994, 2004  相似文献   

7.
In preliminary experiments to optimize the condition of a laser heating, zone drawing for poly(ethylene terephthalate) (PET) fiber, a microfiber was prepared by a continuous‐wave carbon dioxide (CW CO2) laser heating. CW CO2 laser heating was carried out at an extremely low applied tension (σa) at a higher laser power density (PD) as compared to the optimum condition for the laser heating, zone drawing of PET fiber reported previously. The microfibers were obtained by CO2 laser heating carried out at a PD of 15.8 W cm?2 and under a σa of 0.66 MPa or lower. The diameter of the fiber decreased with a decreasing σa and increasing PD. The smaller the diameter, the higher was its birefringence. The smallest diameter fiber obtained at σa = 0.17 MPa at PD = 21 W cm?2 had a diameter of 4.5 μm and a birefringence of 0.112, and its draw ratio estimated from the diameter reached 3086 fold. Such a high draw ratio was not previously attained by any drawing method. In a wide‐angle X‐ray diffraction photograph of the smallest diameter fiber, indistinct reflections due to oriented crystallites were observed. An SEM micrograph of the smallest diameter fiber showed a smooth surface without any crack and was uniform in diameter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3297–3283, 2003  相似文献   

8.
An isotactic polypropylene (i‐PP) microfiber was obtained by irradiating a carbon dioxide laser to previously drawn fibers. To prepare the thinner i‐PP microfiber, it is necessary to previously draw original i‐PP fibers under an applied tension of 7.8 MPa at a drawing temperature of 140°C. The drawn fiber was heated under an applied tension of 0.3 MPa using the laser operated at a power density of 39.6 W cm?2. The thinnest i‐PP microfiber obtained under optimum conditions had a diameter of 1.8 μm and a birefringence of 30 × 10?3. Its draw ratio estimated from the diameter reached 51,630. It is so far impossible to achieve such a high draw ratio by any drawing. The wide‐angle X‐ray diffraction photograph of the microfiber shows the existence of the oriented crystallites. Laser‐heating allows easier fabrication of microfibers compared with the conventional technology such as the conjugate spinning. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1534–1539, 2004  相似文献   

9.
Polarized internal reflectance spectroscopy (IRS) has been used to evaluate molecular orientation and crystallinity of poly(ethylene terephthalate) film surfaces. Measurements were taken using samples stretched in both uniaxial and biaxial modes. All bands of interest were normalized with a reference band near 1410 cm?1, resulting from phenylene ring vibrations. Normalization was performed in order to overcome problems with sample contact and effective thickness. Results obtained using bands representing trans and gauche rotational isomers, present, respectively, at 1340 and 1370 cm?1, have been related to data acquired using density and birefringence techniques. The polarized IRS technique discussed is well suited for investigations of polymer orientation and crystallinity, since it avoids limitations related to sample thickness and clarity imposed by polarized transmission infrared spectroscopy. Parameters such as orientation functions, attenuation indices, dichroic ratios, and structural factors have been determined from data collected in each of the three spatial directions. Results are correlated with corresponding density, birefringence, and refractive index values and are found to give good agreement with these methods. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Mercerized wood species were impregnated with N,N‐dimethylacetamide. Their Fourier transform infrared spectra then showed enhanced absorption at 1419 cm?1 (? C? /CH3), and the 1267‐cm?1 (? N? /CH3) stretching band confirmed the occurrence of a modification reaction. Thermogravimetric investigation of the resultant wood polymer composites (WPCs) indicated a better thermal stability in comparison with that of the raw wood. The dynamic Young's modulus of the WPCs was significantly increased compared with that of raw wood. After modification, analysis by scanning electron microscopy showed porous cells of raw wood filled with the polymer, which led to the better stability of WPCs. Analysis by XRD indicated that the crystallinity of WPCs increased because of an increase in the stiffness and the thermal stability of the composites. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
A nylon 6 microfiber was easily obtained through carbon dioxide laser heating. The laser heating was carried out in two steps: the first laser heating was performed under an applied tension of 36.7 MPa at a power density of 17.3 W cm?2, and the second was performed under 0.18 MPa at 51.81 W cm?2. The microfiber was obtained by the second laser heating of the fiber. The microfiber prepared under the optimum thinning conditions had a diameter of 1.9 μm and a birefringence of 46.2 × 10?3. Its draw ratio, estimated from the diameter, was 9895× (so far, it has been impossible to achieve such a high draw ratio by drawing). A (200) reflection and a (002/202) doublet due to an α form were observed on the equator, but no (200) reflection due to a γ form was observed. The morphology of the crystallites existing in the microfiber was only the α form. Laser heating made the microfiber more easily than conventional technologies, such as conjugate spinning, melt blowing, and flash spinning. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1449–1453, 2004  相似文献   

12.
A laser-heating zone-drawing and zone-annealing method using a continuous-wave carbon dioxide laser was applied to poly(ethylene terephthalate) (PET) fiber to improve its mechanical properties. The as-spun fiber was zone-drawn under a applied tension (σa) of 4.44 MPa at a laser power density (PD) of 6.08 W cm−2, and then the laser-heated zone-drawn fiber was zone-annealed. The laser-heating zone-annealing was carried out in three steps: the first annealing was carried out under σa = 139 MPa at 4.83 W cm−2; the second annealing was carried out under σa = 283 MPa at 4.83 W cm−2, and the third annealing was carried out under σa = 432 MPa at 3.45 W cm−2. The surface temperature distribution of the fiber irradiated with the CO2 laser was measured by using an infrared thermographic camera equipped with a magnifying lens. The relation between the laser power and the surface temperature of the fiber became clear in the laser-heating zone-drawing and the laser-heating zone-annealing. The fiber obtained finally had a birefringence of 0.239, a degree of crystallinity of 55%, a tensile modulus of 19.8 GPa, and a storage modulus of 25.7 GPa at 25°C. In FTIR measurements, a trans conformation increased with the processing, but a gauche one decreased. The laser-heating zone-drawing and zone-annealing method was found to be effective in producing the PET fiber with high modulus and high strength. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2775–2783, 2001  相似文献   

13.
Isotactic polypropylene (iPP) is used in a wide variety of products, including the rapidly growing area of nonwoven fabrics. A new method based on Raman microspectroscopy is developed to determine the morphology of iPP fibers in complex structures through correlations with specific features of the Raman spectra and the birefringence and Lorentz density of a series of fibers. A good correlation is found between the fourth Legendre polynomial (P4) of the principle axis of the Raman tensor of the 841 cm?1 band and the birefringence. Only vibrations that include the C? C? C backbone stretch correlate well with the birefringence. There is a second, empirical correlation between the birefringence and the depolarization ratios of the 841 and 809 cm?1 Raman bands when the fiber axis is oriented parallel to the laser polarization. The experimental protocol for this empirical correlation is much simpler than for the P4 correlation while simultaneously yielding improved accuracy. There is another empirical correlation between the Lorentz density and the depolarization ratios of the 841 and 1330 cm?1 Raman bands. Thus, the birefringence and Lorentz density of iPP fibers could be determined quantitatively using polarized Raman microspectroscopy. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1330–1338, 2001  相似文献   

14.
The structural changes and crystallization kinetics of polylactide (PLA) during cold crystallization under CO2 at 80 °C were studied using in situ high‐pressure Fourier transform infrared (FTIR) spectroscopy. The FTIR spectra show that PLA can crystallize under air and CO2, and some differences are observed. In the second‐derivative spectra, the 1220 cm?1 band is only found for PLA crystallized under CO2, and the tt conformer of PLA crystallized under CO2 is located at 1749 cm?1, while that of PLA crystallized under air is located at 1751 cm?1. From wide‐angle X‐ray diffraction, only the α′‐crystal is observed when PLA is crystallized under air, whereas the α‐crystal appears when crystallized under CO2. The crystalline‐sensitive bands at 921 and 1458 cm?1 were used to analyze the crystallization kinetics of PLA. When PLA crystallizes under air, the 1458 cm?1 band changes faster than the 921 cm?1 one; when it crystallizes under CO2, the result reverses. This suggests that CO2 hinders interchain interactions while promoting the helix conformation. © 2015 Society of Chemical Industry  相似文献   

15.
Band assignments in the polarized i.r. absorption spectra of sulphochlorinated polyethylene are discussed. The absorption band at 720 cm?1 and computer-resolved absorption spectra in the 1000–1600 cm?1 region have been used for conformational analysis of the reaction products. It has been concluded that gauche methylene sequences are preferentially attacked during the heterogeneous sulphochlorination of polyethylene. However, gauche and trans methylene sequences seem to be equally susceptible to chlorination. Analysis of the dichroic character of the i.r. absorption bands of products obtained from preoriented polyethylene films enabled us to elucidate the conformation of SO2Cl groups attached to the polymeric chains. The orientation of the parent polyethylene is preserved to a large extent in the sulphochlorinated materials and in the products of their hydrolysis.  相似文献   

16.
Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm?1, 1425 cm?1, 1163 cm?1, 983 cm?1, and 897 cm?1 to 2894 cm?1, 1420 cm?1, 1161 cm?1, 993 cm?1, and 895 cm?1 and the change in peak height at 1111 cm?1 and 1059 cm?1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm?1 assigned as Si? O? C band, at 765 cm?1 assigned as Si? C symmetric stretching bond, at 700 cm?1 assigned as Si? O? Si symmetric stretching, and at 465 cm?1 assigned as Si? O? C asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm?1 and in band characteristics of aromatic rings (1604 cm?1 and 710 cm?1) and a strong absorption at 1272 cm?1 for C? O band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Melt viscosity and flow birefringence of bisphenol A-type polycarbonate were measured and analyzed by the application of rubber-like photoelastic theory. The melt viscosity in the Newtonian flow region increased with the molecular weight to the power of 3.4. In polycarbonate, the shear stress of the Newtonian flow region was to 106 dyn/cm2, whereas in PMMA it was at most 3 = 105 dyn/cm2. The flow birefringence δn has a linear relation with shear stress S, that is δn = 5.7 × 10?10 S. The principal polarization difference of flow unit α1 – α2 was 1.62 × 10?23 cm3, which was obtained by the application of the rubber-like elastic theory. In PMMA, it was 3.9 = 10?25 cm3; about 1/40 of that was polycarbonate. The anisotropy of polarizability of the flow unit of polycarbonate was also about 40 times larger than that of PMMA. So the anisotropy reflected the large flow birefringence of the polycarbonate.  相似文献   

18.
Uniaxial tension tests to the yield point were performed on phenolphthalein polyether ketone (PEK-C) from room temperature to near the glass transition temperature (Tg) at a constant rate of 0.02 min?1. At room temperature, some measurements were also made at strain rates from 0.002 min?1 to 2 min?1. Yield stress was a linear function of temperature and log strain rate. The temperature and the strain rate dependence of yield stress could be modeled using Eyring theory. Yield energy was found to be a linear function of temperature. Young's modulus, yield strain, elastic strain, and plastic strain all decreased with temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Nlon 6 fibers were zone drawn and zone annealed by using a continuous wave carbon dioxide laser to develop their mechanical properties. A laser‐heating zone drawing was carried out under a applied tension of 35.4 MPa at a power density of 9.65 W · cm?2, and then the zone‐drawn fiber was annealed. A laser‐heating zone annealing was carried out in two steps at a power density of 9.65 W · cm?2; the first step was carried out under 423 MPa and the second under 517 MPa. The treating temperature of the fiber heated by the CO2 laser was measured by using an infrared thermographic camera equipped with a magnifying lens. The treating temperature at the zone drawing is 138°C, and those at the first and the second zone annealing are 121 and 125°C, respectively. The second laser‐heated zone‐annealed fiber has a birefringence of 65.2 × 10?3, a degree of crystallinity of 54%, and a storage modulus of 21 GPa at 25°C. Wide‐angle X‐ray diffraction patterns for the laser‐heated zone‐drawn and the zone‐annealed fibers show (200) reflection and (002/202) doublet due to only an α form on the equator. The laser‐heated zone‐drawn fiber has a melting endotherm peaking at 216°C and a trace of shoulder on the higher temperature side of its peak, and the laser‐heated zone‐annealed fibers have a single melting endotherm peaking at 216°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1711–1716, 2002  相似文献   

20.
To accelerate the commercial application of mixed‐conducting membrane reactor for catalytic reaction processes, a robust mixed‐conducting multichannel hollow fiber (MCMHF) membrane reactor was constructed and characterized in this work. The MCMHF membrane based on reduction‐tolerant and CO2‐stable SrFe0.8Nb0.2O3‐δ (SFN) oxide not only possesses a good mechanical strength but also has a high oxygen permeation flux under air/He gradient, which is about four times that of SFN disk membrane. When partial oxidation of methane (POM) was performed in the MCMHF membrane reactor, excellent reaction performance (oxygen flux of 19.2 mL min?1 cm?2, hydrogen production rate of 54.7 mL min?1 cm?2, methane conversion of 94.6% and the CO selectivity of 99%) was achieved at 1173 K. And also, the MCMHF membrane reactor for POM reaction was operated stably for 120 h without obvious degradation of reaction performance. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2592–2599, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号