首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用湿法技术从废旧锂离子电池中回收有价金属   总被引:2,自引:0,他引:2  
赵东江  马松艳 《化学工程师》2011,25(2):52-54,64
采取湿法回收技术对废旧锂离子电池进行处理,研究了回收铝、钴、锂金属元素的工艺条件.在90℃时,用10%NaOH浸出铝,其浸出率达到96%.在温度90℃、4mol·L-1H2SO4、固-液比1:8、反应时间100min的浸出条件下,钴、锂浸出率为92%.利用NaHCO3和Na2CO3,为沉淀剂,从酸浸出液分别制备得到Co...  相似文献   

2.
对硫酸-过氧化氢体系浸取废旧锂离子电池废料回收钴工艺进行了研究,以钴浸出率为评价指标,探讨了硫酸质量浓度、液固比、浸出时间和浸出温度对钴回收的影响。利用Box-Behnken响应面技术对钴浸出参数进行了优化分析。结果表明:在硫酸浓度为2.5 mol/L,H_2SO_4∶H_2O_2为6∶1,固液比为1∶20,浸出温度70℃,浸出时间1.0 h条件下,钴浸出率最高(97.58%)。验证试验,钴浸出率平均值为97.58%,与模型理论预测值97.09%接近。  相似文献   

3.
《广东化工》2021,48(13)
本研究采用还原焙烧法回收废旧三元锂离子电池正极材料中的锂元素,考察了配料比、焙烧温度、焙烧时间、水淬时间、水淬液固比对锂浸出率的影响。结果表明:在三元正极材料与石墨粉质量配比为7∶3、焙烧温度为1050℃、焙烧时间为60 min、水淬时间为30 min、水淬液固体积质量比为10 m L/g的条件下,锂浸出率为93.47%,实现了对锂元素的高效选择性浸出。  相似文献   

4.
废旧锂离子电池中含有大量的金属钴与锂,具有较高的回收利用价值。文章以废旧锂离子电池中的正极材料为原料,考察了正极材料中的钴和锂在氨基磺酸和过氧化氢混合体系中浸出的实验。运用单因素实验,研究了氨基磺酸浓度、过氧化氢质量分数以及固液比等条件对Co2+、Li+浸出效果的影响。实验结果表明,反应产物中有氨基磺酸钴生成,当氨基磺酸浓度为0.75 mol/L、过氧化氢质量分数为5 vol.%、温度为60℃、固液比为5 g/L、时间为2 h时,钴和锂的浸出率均超过98%。  相似文献   

5.
首先分析了废旧手机电路板非金属材料的存在形式和所含元素,然后综述了热解法、化学法和物理法等废旧手机电路板非金属材料的回收技术进展,分析了各种方法的工艺特点,最后重点介绍了废旧手机电路板中的非金属材料作为增强体应用于聚丙烯、聚氯乙烯、聚乙烯、尼龙等热塑性塑料和环氧树脂、不饱和聚酯等热固性塑料的研究现状。  相似文献   

6.
采用NaOH溶液浸泡法分离废旧磷酸铁锂电池的铝箔和正极材料,采用有机溶剂浸泡法分离正极活性物质和粘结剂,采用酸浸-沉淀法回收废旧磷酸铁锂电池中的铁和锂,考察了回收废旧磷酸铁锂电池中的铁和锂,考察了试剂浓度、固液比和反应时间等因素对处理效果的影响,实验结果表明:在NaOH溶液的浓度为0.4 mol/L,NaOH溶液与正极片的液固比(m L/g)为10的条件下,将正极废片在NaOH溶液中浸泡10 min,可以实现铝箔与正极材料的完全分离;在温度为60℃,有机溶剂与正极材料的液固比(m L/g)为10的条件下,将正极材料在有机溶剂NMP中浸泡30 min,可以实现正极活性物质与粘结剂的完全分离;在硫酸浓度为4 mol/L,液固比(m L/g)为10,反应温度为60℃的条件下,将正极活性物质在硫酸-双氧水体系中反应2 h,铁和锂的浸出率分别达到96.4%和97.0%;在浸出液的pH为3时,铁的沉淀率达到99.0%;在除去铁的浸出液中,碳酸钠的用量为200 g/L时,锂的沉淀率达到98.9%。  相似文献   

7.
《应用化工》2022,(6):1366-1369
采用SO_2还原浸出工艺回收废旧锂离子电池正极材料中的有价金属。结果表明,最佳工艺条件为:原料液固比为50∶1(m L/g),SO_2气体流速为0. 4 L/min,双氧水添加量为0. 1 g/g原料,反应温度为80℃,反应时间为60 min,此时Li、Ni、Co、Mn浸出率分别为98. 10%,98. 04%,97. 81%,98. 05%。浸出液经氧化、沉淀、过滤、静置等除杂过程后,得到的镍钴锰回收产品符合锂离子电池正极材料制备的要求。  相似文献   

8.
邹海凤  程琥  王雪  陈卓  胡长刚 《应用化工》2019,(6):1366-1369
采用SO_2还原浸出工艺回收废旧锂离子电池正极材料中的有价金属。结果表明,最佳工艺条件为:原料液固比为50∶1(m L/g),SO_2气体流速为0. 4 L/min,双氧水添加量为0. 1 g/g原料,反应温度为80℃,反应时间为60 min,此时Li、Ni、Co、Mn浸出率分别为98. 10%,98. 04%,97. 81%,98. 05%。浸出液经氧化、沉淀、过滤、静置等除杂过程后,得到的镍钴锰回收产品符合锂离子电池正极材料制备的要求。  相似文献   

9.
废旧电路板非金属材料的回收利用方法研究进展   总被引:1,自引:0,他引:1  
概述了国内外废旧电路板回收利用的研究进展,分析了废旧电路板的成分和特性,介绍了废旧电路板回收利用的方法与工艺,最后指出在废旧电路板回收利用行业中存在的问题。  相似文献   

10.
介绍了当前电子废弃物中常用的浸金方法及其优缺点, 分析了电子废弃物中硫代硫酸盐法浸金的研究现状。针对这一研究现状, 本文采用碱性Na2S2O3溶液中添加Cu2+的方法, 对废旧IC(integrated circuit)芯片中金的浸出进行了试验研究。通过对IC样品进行机械预处理、粒度分析、解离度分析、化学预处理和浸金试验, 探讨了Na2S2O3浓度、Cu2+浓度、NH3浓度、浸出温度、浸出时间和反应液固比6个因素对金浸出率的影响。试验得出最佳浸金条件为:Na2S2O3浓度0.3mol/L, Cu2+浓度0.03mol/L, NH3浓度0.5mol/L, 添加3.5g/L的Na2SO3作为稳定剂, 浸取温度50℃, 浸取时间2.5h, 液固比10:1, 在最佳浸出条件下, 金的最高浸出率为92.25%。与传统方法相比, 该方法具有浸出速度快、浸出液无毒、操作简单等优点, 是一种具有开发潜力的电子废弃物浸金方法。  相似文献   

11.
随着锂离子电池在电动能源及储能领域的大量使用,废旧锂离子电池所带来的环境及资源问题日益突出。废旧锂离子电池中有价金属绿色高效的回收,在资源综合利用、节能环保及可持续发展等方面具有重大的现实意义,并逐渐成为世界各国的研究热点。综述了近年来国内外废旧锂离子电池中有价金属的回收现状,主要流程包括预处理、电极材料的溶解浸出及浸出液中有价金属的分离回收等环节,分析比较了各种回收途径的优缺点,并在此基础上对废旧锂离子电池回收工艺的发展趋势及应用前景做出了分析展望。  相似文献   

12.
张飞  陆颖舟 《化工进展》2019,38(8):3874-3880
采用酸浸法和溶胶-凝胶法耦合的一步法技术路线回收和再生LiCoO2,简化了流程。先使用柠檬酸浸出正极材料中的Co和Li元素,然后采用溶胶-凝胶法从浸出液中直接再生LiCoO2,柠檬酸在过程中起到了浸出剂和螯合剂的双重作用,简化了回收和再生流程。摸索了柠檬酸浓度、固液比、浸出温度、H2O2体积浓度和浸出时间对Co和Li浸出效率的影响规律,探究了煅烧温度对再生钴酸锂结构组成、颗粒形貌以及电化学性能的影响规律。结果表明,最佳浸出条件为:柠檬酸浓度为1.5mol/L,固液比为20g/L,浸出温度为80℃,H2O2体积分数为2%,浸出时间为60min。在此条件下,Co和Li的浸出率分别达到93.7%、98.2%。通过电化学分析表明,在700℃下煅烧得到的再生LiCoO2电化学性能最佳,在1C下经50次循环后可逆放电比容量为118.7mA·h/g,容量保持率为93%。  相似文献   

13.
随着新能源汽车产业快速发展,磷酸铁锂动力电池退役量爆发式增长,回收需求迫切,但面临回收利用经济性较差的难题。正极材料价值较高,本文提出采用磷酸浸出废旧正极材料以制备电池用磷酸铁,但铝等杂质的分离是关键。本文以含铝的磷酸铁锂正极粉为原料,开展了磷酸浸出过程优化及宏观动力学研究,重点研究了酸料比、浸出温度、液固比、搅拌速度等参数对磷酸铁锂及铝浸出效果的影响规律,并考察了磷酸铁锂在磷酸溶液中浸出的宏观动力学。研究结果表明,在酸料比1.1mL/g、温度20℃、液固比(5∶1)mL/g、搅拌速度400r/min、浸出时间120min条件下,磷酸铁锂浸出率大于93%,铝浸出率小于20%;磷酸铁锂正极粉磷酸浸出过程符合无固态产物层的收缩核模型,表观活化能为24.62kJ/mol,浸出过程受扩散控制。  相似文献   

14.
采用浸出-中和沉淀工艺回收富集再生铅精炼碱渣中锡。新产出碱渣在液固比3,反应时间1.5h,室温条件下浸出,锡浸出率达到93%以上;库存碱渣在液固比3,反应时间1.5 h,浸出温度60℃,氢氧化钠浓度100 g/L条件下锡浸出率达到68%的比较理想效果。通过对各种类型碱渣按照一定比例混合可以实现碱渣中锡的选择性浸出,浸出浆料中加入5‰的4‰PAM絮凝剂可以实现浸出浆料的快速液固分离。采用废旧铅酸电池拆解废硫酸对浸出液进行中和沉锡,在pH=6~8时浸出液中锡基本完全沉淀;中和沉淀物干燥后锡含量约为60%、铅小于2%、锑小于0.5%。  相似文献   

15.
以废阴极炭块为原料,通过成分分析,研究了不同液固比以及浸出时间对氟化物浸出效果的影响,并选取氯化钙作为氟化物回收药剂,研究了不同pH、药剂用量、反应时间、反应温度对回收效果的影响,还探讨了不同浸出次数对氟化钙产量以及浸出残渣的成分影响。结果显示,在液固比为8∶1、浸出时间为15 min的浸出条件下,采用浸出液初始pH,添加理论需要的CaCl_2·6H_2O用量,反应时间为45 min,反应温度为100℃可以达到氟化钙的最佳回收效果,且最多进行2次浸出回收,残渣中石墨的纯度随着浸出次数的增加逐渐增大。  相似文献   

16.
张旭  金士威 《广州化工》2013,41(9):118-120
采用碱溶解铝→低固液比盐酸浸出→P507萃取→碳酸沉锂→结晶回收钴的流程,研究了废旧锂电池中金属铝和钴的回收工艺。探讨了氢氧化钠的浓度和pH值对铝产率的影响;考察了盐酸的浓度、溶解时间以及双氧水加入的量对钴的浸出率的影响。试验表明,当pH值为10,氢氧化铝的浓度为0.1mol/L时铝的回收率可以达到92%;在盐酸的浓度为9%,溶解时间为2.5 h的条件下钴的浸出率可以达到90%。  相似文献   

17.
采用水浸?酸性废水浸出两步法,水浸溶出铝电解槽废旧阴极中可溶氟化物,对难溶电解质进行了废水浸出,考察了搅拌速率、液固比、温度对浸出率的影响,并建立了反应动力学方程. 结果表明,废旧阴极酸性废水浸出过程符合未反应收缩核模型,难溶电解质的浸出控制环节为内扩散,提高反应温度、延长反应时间均能提高浸出率,浸出过程反应表观活化能为12.71 kJ/mol. 在浸出温度80℃、搅拌速率300 r/min、液固比8 mL/g的条件下浸出180 min,碳纯度可提升至95.83%. 浸出后碳粉可按比例配入原厂阴极中.  相似文献   

18.
针对氰化提金工艺酸浸渣中低品位金属铅的综合回收,采用盐浸法对金属铅进行了浸出实验研究,通过正交试验详细考察了浸出液固质量比、浸出温度、氯化钠浓度、浸出pH和浸出时间等因素对浸铅率的影响。结果表明,浸出液固质量比为5、浸出温度为333.15 K、氯化钠质量分数为30%、pH=0、浸出时间为4 h的实验条件下,最佳平均浸铅率为92.05%,相对标准偏差RSD=4.3‰;室温下最佳平均浸铅率为90.20%,RSD=4.1‰。因此,酸浸渣常温盐浸提铅是综合利用矿产资源回收铅及提高金、银回收率的有效途径。  相似文献   

19.
目前废旧电路板热解的研究很多,电路板中存在的溴化阻燃剂影响了废旧电路热解产物的回收利用.结合国内外研究现状,主要介绍了热解条件对溴迁移的影响,包括热解温度的影响、压力的影响和升温速率的影响.如果在热解过程中脱除溴,对电路板热解产物的清洁利用和环境保护有重要意义.  相似文献   

20.
针对铜阳极泥综合回收产生的副产物碲化铜渣含碲较高特点,研究采用碱浸工艺从粗碲化铜中分离碲,考察了氧化条件、碱浓度、浸出温度、浸出时间、液固比(mL/g)等因素对碲浸出率的影响,结果表明:粗碲化铜在碱性浸出最佳工艺条件为:浸出液碱浓度(NaOH)为15%,液固比(mL/g)为4∶1,浸出温度为85℃,浸出时间为120 min,碲的浸出率可达83%,碲可得到初步有效分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号