首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano‐TiO2 particles were first milled into butyl acetate or trimethylolpropane triacrylate (TMPTA) to obtain TSB and TST slurries, then embedded into epoxy acrylate to obtain UV‐curable coating. The influence of nano‐TiO2 particles on the photopolymerization kinetics, tack free time, thermal and optical properties of UV‐curable coatings was investigated. It was found that TST‐based coating had a decreasing but TSB‐based coating had an increasing UV cured rate in comparison with the pristine epoxy acrylate. Nevertheless, the TST‐based coating occupied shorter tack free time, good thermal property and UV absorbance than their corresponding TSB‐based coating. POLYM. ENG. SCI. 46:1402–1410, 2006. © 2006 Society of Plastics Engineers.  相似文献   

2.
Poly (acrylonitrile‐butadiene‐styrene) (ABS) was used to modify diglycidyl ether of bisphenol‐A type of epoxy resin, and the modified epoxy resin was used as the matrix for making TiO2 reinforced nanocomposites and were cured with diaminodiphenyl sulfone for superior mechanical and thermal properties. The hybrid nanocomposites were characterized by using thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), universal testing machine (UTM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The bulk morphology was carefully analyzed by SEM and TEM and was supported by other techniques. DMA studies revealed that the DDS‐cured epoxy/ABS/TiO2 hybrid composites systems have two Tgs corresponding to epoxy and ABS rich phases and have better load bearing capacity with the addition of TiO2 particles. The addition of TiO2 induces a significant increase in tensile properties, impact strength, and fracture toughness with respect to neat blend matrix. Tensile toughness reveals a twofold increase with the addition of 0.7 wt % TiO2 filler in the blend matrix with respect to neat blend. SEM micrographs of fractured surfaces establish a synergetic effect of both ABS and TiO2 components in the epoxy matrix. The phenomenon such us cavitation, crack path deflection, crack pinning, ductile tearing of the thermoplastic, and local plastic deformation of the matrix with some minor agglomerates of TiO2 are observed. However, between these agglomerates, the particles are separated well and are distributed homogeneously within the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Nanosized titania–polyacrylate hybrid films were prepared by controlled hydrolysis of titanium tetrabutoxide (TTB) in Span 85/Tween 80 reverse micelles as well as rapid entrapment of nanosized particles by subsequent photopolymerization. This work focused on the characterization of the photopolymerization of the transparent hybrid films via photocalorimetry. The polymerization kinetics of several mixtures of mono‐ and di‐functional acrylate monomers were compared to examine the effect of average functionality. Further, Effects of [H2O]/[surfactant] molar value and TTB concentration on photopolymerization kinetics were also studied. X‐ray photoelectron spectra and FTIR demonstrated the formation of TiO2 in the hybrid films. Atomic Force Microscope (AFM) images showed the inorganic domains with mean sizes of 25 nm were uniformly dispersed in the polymeric networks. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
The TiO2 nanoparticles were modified by diblock copolymers, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the epoxy nanocomposites containing different TiO2 and with different contents were prepared. Subsequently, the effects of TiO2 content on the mechanical and thermal properties of nanocomposites were investigated. The results indicated that after grafting copolymers onto TiO2, the dispersion of TiO2 and interaction with epoxy matrix could be significantly increased, therefore, the mechanical properties of the nanocomposites were improved greatly. When the TiO2-PMMA-b-PS content was 1 wt%, the impact strength and flexural strength reached their the best, and increased up to 96% and 43%, respectively. Furthermore, the thermal stability of the nanocomposites was also distinctly improved.  相似文献   

5.
A new type of inorganic‐polymer hybrid materials of epoxy/silica‐titania had been prepared by incorporating grafted epoxy, which had been synthesized by epoxy and tetraethoxysilane (TEOS), with highly reactive TEOS and tetrabutyltitanate (TBT) by using the in situ sol–gel process. The grafted epoxy was confirmed by Fourier transform infrared spectroscopy (FT‐IR) and 1H‐NMR spectroscopic technique. Results of FT‐IR spectroscopy and atomic force microscopy (AFM) demonstrated that epoxy chains have been covalently bonded to the surface of the SiO2‐TiO2 particles. The particles size of SiO2‐TiO2 are about 20–50 nm, as characterized by AFM. The experimental results showed that the glass‐transition temperatures and the modulus of the modified systems were higher than that of the unmodified system, and the impact strength was enhanced by two to three times compared with that of the neat epoxy. The morphological structure of impact fracture surface and the surface of the hybrid materials were observed by scanning electron microscopy and AFM, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1075–1081, 2006  相似文献   

6.
Miniemulsion copolymerization of styrene/n‐butyl acrylate was investigated as a means of encapsulating hydrophilic titanium dioxide (TiO2) in a film‐forming polymer. Dispersion studies of the TiO2 were first carried out to determine the choice of stabilizer, its concentration, and the dispersion process conditions for obtaining stable TiO2 particles with minimum particle size. Through screening studies of various functional stabilizers and shelf‐life stability studies at both room and polymerization temperatures, Solsperse 32,000 was selected to give relatively small and stable TiO2 particles at 1 wt % stabilizer and with 20–25 min sonification. The subsequent encapsulation of the dispersed TiO2 particles in styrene/n‐butyl acrylate copolymer (St/BA) via miniemulsion polymerization was carried out and compared with a control study using styrene monomer alone. The lattices resulting from the miniemulsion encapsulation polymerizations were characterized in terms of the encapsulation efficiencies (via density gradient column separations; DGC) and particle size (via dynamic light scattering). Encapsulation efficiencies revealed that complete encapsulation of all of the TiO2 by all of the polymer was not achieved. The maximum encapsulation efficiencies were 79.1% TiO2 inside 61.7% polystyrene and 63.6% TiO2 inside 38.5% St/BA copolymer. As the density of the particles collected from the DGC increased from one layer to another, both the average particle size and the number of the TiO2 particles contained in each latex particle increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3479–3486, 2006  相似文献   

7.
Summary: Titania‐containing coatings were prepared by cationic photopolymerization of an epoxy resin either by dispersion of preformed TiO2 nanoparticles or by their in‐situ generation through a sol‐gel dual‐cure process. The kinetics of photopolymerization was evaluated by real‐time FT‐IR, studying the effect of the TiO2 concentration. The properties of cured films were investigated, showing an increase of hydrophilicity on the surface of the coatings with increasing TiO2 content. TEM analysis demonstrated that it is possible to achieve a significantly better control of the dispersion of the inorganic particles within the organic matrix by in‐situ generation of TiO2, thus completely avoiding macroscopic phase separation and obtaining homogeneous, transparent coatings.

Bright‐field TEM micrograph for TIP20 dual‐cured film.  相似文献   


8.
In this study, the effects of multi‐walled carbon nanotubes (MWCNT), and its hybrids with iron oxide (Fe2O3) and copper oxide (CuO) nanoparticles on mechanical characteristics and thermal properties of epoxy binder was evaluated. Furthermore, simultaneous effects of using MWCNT with TiO2 as pigment and CaCO3 as filler for epoxy composites were determined. To investigate effects of nano‐ and micro‐particles on epoxy matrix, the samples were evaluated by TGA and DTA. It was found that the hybrid of MWCNT with nano metal oxides caused considerable increment in the tensile and flexural properties of epoxy samples in comparison to the single MWCNT containing samples at the same filler contents. Significant improvement in the thermal conductivity of epoxy samples was obtained by using TiO2 pigment along with MWCNT. The TiO2 pigment also caused considerable improvement in mechanical properties of the epoxy matrix and the MWCNT containing nanocomposite. The best mechanical and thermal properties of epoxy nanocomposites were obtained at 1.5 wt % of MWCNT and 7 wt % of TiO2 that it should be attributed to particle network forming of the particles which cause better nano/micro dispersion and properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43834.  相似文献   

9.
A solvothermal process was developed to in situ prepare epoxy (EP)/TiO2 hybrid precursors. The chemical structure of samples was confirmed by X-ray and Fourier transformed infrared spectroscopy. Field emission scanning electron microscope micrographs of cured EP/TiO2 hybrid composites showed that well-dispersed TiO2 nanoparticles were successfully in situ formed in epoxy matrix through the solvothermal process. The thermogravimetic analysis, DSC, and gel content measurements showed that EP/TiO2 hybrid precursors were fully cured with the glass transition temperature decreasing gradually. The effect of TiO2 contents on optical and surface properties was investigated in detail. The results indicated that epoxy/TiO2 nanocomposites exhibited excellent UV shielding effect and high visible light transparency. The contact angle of EP/TiO2 nanocomposites, when the content of silane-coupling agent (KH560) was 5 g and the content of tetrabutyl titanate (TBT) was 3 g, can reach as high as 101°, which was 36° higher than that of pure EP, representing for the increase of hydrophobicity. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The kinetics of the photopolymerization for nanocomposites containing nanosilica with 2,2‐dimethoxy‐1,2‐diphenylethan‐1‐one or benzophenone/n‐methyl diethanolamine (BP/MDEA)as photoinitiators were studied by FTIR spectroscopy. It was found that nanocomposites containing nanosilica had higher conversion in comparison with pristine EA. The presence of MPS and ethanol accelerated the photopolymerization of nanocomposites, while the presence of water decelerated it. The photopolymerization of nanocomposites was more sensitive to oxygen than that of pristine EA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99:1429–1436, 2006  相似文献   

11.
Polyurethane acrylate (PUA)–Ag/TiO2 nanocomposites were synthesized through in situ polymerization. The well-dispersed Ag/TiO2 nanorods serve as photoinitiator. Meanwhile, the PUA–Ag/TiO2 nanocomposite films exhibit superior activity toward the photocatalytic degradation of Escherichia coli under UV light. The excellent UV curing and antibacterial activities can be ascribed to the synergistic effect of Ag and TiO2, which promotes the effective electron/hole separation and thus generates various reactive species. Thin films with these nanoparticles are more hydrophilic after UV illumination. And the antibacterial mechanism of the UV-curable PUA–Ag/TiO2 nanocomposites was proposed.  相似文献   

12.
Nowadays, nanocomposites are a special class of materials having unique physical properties and wide application potential in diverse areas. The present research work describes an efficient method for synthesis of a series of polypyrrole/titanium dioxide (PPy/TiO2) nanocomposites with different TiO2 ratios. These nanocomposites were prepared by one‐step in situ deposition oxidative polymerization of pyrrole hydrochloride using ferric chloride (FeCl3) as an oxidant in the presence of ultra fine grade powder of anatase TiO2 nanoparticles cooled in an ice bath. The obtained nanocomposites were characterized by Fourier‐transform infrared (FTIR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD), and scanning electron microscope (SEM) techniques. The obtained results showed that TiO2 nanoparticles have been encapsulated by PPy with a strong effect on the morphology of PPy/TiO2 nanocomposites. Also, the synthesized PPy/TiO2 nanocomposites had higher thermal stability than that of pure PPy. The investigation of electrical conductivity of nanocomposites by four‐point probe instrument showed that the conductivity of nanocomposite at low TiO2 content is much higher than of neat PPy, while with the increasing contents of TiO2, the conductivity decreases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   

14.
Polyurethane acrylate (PUA)-supported rGO/TiO2 electrical conductive and antibacterial nanocomposites were synthesized via in-situ polymerization. The well-dispersed rGO/TiO2 can serve as photoinitiator and give PUA material antibacterial property at the same time. The excellent UV-curing and antibacterial activity could be explained that the synergistic effect of rGO and TiO2, which could promote the effective electron/hole separation and thus generate various reactive species. After dopped the rGO/TiO2 into the PUA matrix, the PUA film became electric conductive. The obtained nanocomposites will have promising applications in high performance antibacterial coatings.  相似文献   

15.
Epoxy/TiO2 composites were prepared by solution mixture method, in which epoxy resin and nano‐TiO2 liquid were mixed in the presence of methyl isobutylketone. According to the experimental results, hydrogen bonds can be formed by mixing TiO2 particles and epoxy resin. The SEM analysis suggests that TiO2 particles are uniformly distributed within the material, while some silver streaks occur at the surface of materials. Besides, thermo‐resistance and mechanical property of materials are found to improve with the addition of TiO2, but degrades if the nano‐TiO2 is the excess of 3%. Furthermore, these properties can be improved with the increasing concentration of methyl isobutylketone. POLYM. COMPOS., 27:195–200, 2006. © 2006 Society of Plastics Engineers.  相似文献   

16.
Epoxy resin/TiO2 and epoxy resin/SiO2 hybrids were prepared by different procedures, and their mechanical properties were correlated to their microstructures, as indicated by small‐angle X‐ray scattering (SAXS) measurements. Epoxy resin/TiO2 hybrids were prepared by mixing the epoxy resin (EP828) with N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (S320) in acetone, and then titanium‐n‐butoxide (TnBU) was added. In addition, epoxy/SiO2 hybrids were prepared by mixing EP828 with a curing agent, a diamino heterocyclic compound (B002) in acetone, and an organo silica sol (silica nanoparticles dispersed in methylethylketone) was added. In the EP828/S320/TiO2 hybrid systems, the TiO2 component was attached to both of the chain ends of the epoxy matrix, hence leading to the formation of inorganic domains via the covalent bonds. SAXS profiles of these hybrids showed peaks at q = 2.3 nm?1, caused by interference between the domains. The storage modulus increased with increasing TiO2 content above the Tg, owing to the strong interactions between TiO2 and the epoxy matrix. The tanδ peak position did not change, although the intensity decreased with increasing TiO2 content. The SAXS profiles of the EP828/B002/SiO2 hybrids were very different to those of the corresponding EP828/S320/TiO2 hybrids, and indicated that SiO2 particles with rough surfaces were randomly dispersed in the epoxy matrix. The storage moduli of the EP828/B002/SiO2 hybrid systems increased only slightly with SiO2 content, because of the weak interactions. These mechanical properties are well explained by the microstructures derived from the SAXS profiles. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Polymer nanocomposites are usually made by incorporating dried nanoparticles into polymer matrices. This way not only leads to easy aggregation of nanoparticles but also readily brings about opaqueness for nanocomposites based on functionally transparent polymers. In this letter, transparent ZnO/epoxy nanocomposites with high‐UV shielding efficiency were prepared via two simple steps: first, in situ preparation of zinc hydroxide (Zn(OH)2)/epoxy from the reaction of aqueous zinc acetate (Zn(Ac)2·2H2O) and sodium hydroxide (NaOH) at 30°C in the presence of high‐viscosity epoxy resin; second, thermal treatment of the as‐prepared Zn(OH)2/epoxy hybrid into ZnO/epoxy composites. Optical properties of the resultant ZnO/epoxy nanocomposites were studied using an ultraviolet–visible (UV–vis) spectrophotometer. The nanocomposites containing a very low content of ZnO nanoparticles (0.06 wt %) possessed the optimal optical properties, namely high‐visible light transparency and high‐UV light shielding efficiency. Consequently, the as‐prepared ZnO/epoxy nanocomposites are promising for use as novel packaging materials in lighting emitting diodes technology. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The influence of incorporated 300 nm TiO2 (4 vol %), graphite (7 vol %), or combination of both fillers on the tribological performance of an epoxy resin was studied under various sliding load (10–40 N) and velocity conditions (0.2–3.0 m/s). Mechanical measurements indicated that the incorporation of TiO2 significantly enhanced the flexural and impact strength of the neat epoxy and the graphite including epoxy. Tribological tests were conducted with a cylinder‐on‐flat testing rig. The incorporation of nano‐TiO2 significantly improved the wear resistance of the neat epoxy under mild sliding conditions; however, this effect was markedly diminished under severe sliding conditions (high velocity and normal load). Nano‐TiO2 reduced the coefficient of friction only under severe sliding conditions. Graphite showed a beneficial effect in reducing the wear rate and the coefficient of friction of the neat epoxy. Compared to the nano‐TiO2‐filled epoxy, the graphite‐filled epoxy showed more stable wear performance with the variation of the sliding conditions, especially the normal load. A synergistic effect was found for the combination of nano‐TiO2 and graphite, which led to the lowest wear rate and coefficient of friction under the whole investigated conditions. The synergistic effect was attributed to the effective transfer films formed on sliding pair surfaces and the reinforcing effect of the nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2391–2400, 2006  相似文献   

19.
Hybrid nanocomposites of poly(2‐hydroxyethyl methacrylate) (PHEMA) and TiO2 nanoparticles were synthesized via surface thiol‐lactam initiated radical polymerization by following the grafting from strategy. Initially, TiO2 nanoparticles were modified by 3‐mercaptopropyl trimethoxysilane to prepare thiol functionalized TiO2 nanoparticles (TiO2? SH). Subsequently, surface initiated polymerization of 2‐hydroxyethyl methacrylate was conducted by using TiO2? SH and butyrolactam as an initiating system. The anchoring of PHEMA onto the surface of TiO2 nanoparticles was investigated by FTIR, 1H‐NMR, XPS, TGA, and XRD analyses. The experimental results indicated a strong interaction between PHEMA and TiO2 nanoparticles owing to covalent bonding. The TEM and SEM images of PHEMA‐g‐TiO2 showed that the agglomeration propensity of TiO2 nanoparticles was significantly reduced upon the PHEMA functionalization. The molecular weight and polydispersity index of the cleaved PHEMA from the surface of TiO2 nanocomposites were estimated by GPC analysis. An improved thermal property of the nanocomposites was observed from TGA analysis. PHEMA‐g‐TiO2 nanocomposites were found to be highly dispersible in organic solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
A series of different type of epoxy resins containing metal(s) have been prepared by the using cobalt acrylate (CoA2), nickel acrylate(NiA2),bismuth acrylate (BiA3) during resinification. The values of epoxide equivalent weight, chlorine content increases whereas hydroxyl content, refractive index decreases in the presence of metal acrylate(s). The influence of complex formation of metal acrylate with ether linkage of epoxy resins were investigated by spectroscopy. Epoxy resins containing cobalt acrylate which was cured by p‐acetylbenzilidinetriphenylarsoniumylide (p‐ABTAY) shows better conducting properties in comparison to NiA2 and BiA3 containing epoxy resins. The dispersion of metal(s) in epoxy resins matrix was confirmed by scanning electron microscope (SEM). The glass transition temperature of epoxy resins containing CoA2 is lower than that of blank epoxy resins and epoxy resins containing bismuth and nickel acrylate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号