共查询到20条相似文献,搜索用时 15 毫秒
1.
《国际聚合物材料杂志》2012,61(3):258-265
Mechanical properties of metal-polymer matrix composites were investigated experimentally. High density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS) were used as the polymer matrix and Fe powder in 5, 10, and 15 vol% was used as the metal. The modulus of elasticity, yield and tensile strength, % elongation, Izod notched impact strength, Shore D hardness, and fracture surfaces of the composites were determined. It was found that vol% Fe reduced the Izod impact strength of HDPE much more than that of PP and PS, while Fe powder increased the hardness of HDPE more than that of PP and PS. Among the composites, PS-Fe composites had higher yield, tensile strength and modulus of elasticity than HDPE-Fe and PP-Fe composites. However, % elongation of PS-Fe composites was lower than that of the other composites. In addition, HDPE- and PP-based composites exhibited ductile type fracture, while PS-Fe composites exhibited brittle type fracture. 相似文献
2.
The effects of five different types of fillers on the thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane elastomers were explored to develop a filled polyurethane elastomeric liner for rocket motors with hydroxyl-terminated polybutadiene-based composite propellants. Two type of carbon black, silica, aluminum oxide, and zirconium(III) oxide were used as filler. Based on the improvement in the tensile properties and the erosion resistance achieved in the first part of the study, an ISAF-type carbon black was selected to be used as the main filler in combination with an additional filler. The second part involves the investigation of polyurethane elastomers containing a second filler in various amounts in addition to the ISAF-type carbon black used as the main filler. In addition to the thermal and mechanical properties, the processability of the uncured polyurethane mixtures were also explored by measuring the viscosity in this second part of the study. The studied fillers do not considerbly change the thermal degradation temperatures and the thermal conductivity of the polyurethane elastomers with a filler content up to 16 wt %. The best improvement in the erosion resistance and tensile strength of the polyurethane elastomers with additional fillers is also achieved when filled with the ISAF-type carbon black, whereas the use of zirconium(III) oxide as additional filler provides almost no improvement in these properties. Viscosity of the uncured polyurethane mixtures increases with the increasing filler content and with the decreasing particle size of the filler. Aluminum oxide-filled elastomers seem to be the most suitable compositions having sufficiently high thermal and mechanical properties, together with the processability of uncured mixtures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1057–1065, 1998 相似文献
3.
Akihiro Matsumoto Keiko Ohtsuka Hajime Kimura Shin‐ich Adachi Minoru Takenaka 《应用聚合物科学杂志》2007,106(6):3666-3673
The purpose of this study is to improve the several properties of composites consisting of a phenolic and fly ash or artificial Zeolite such as sodium type Zeolite (Na? Ze) or calcium type Zeolite(Ca? Ze). And it also includes the improvement in the flowability of molding compounds. The molding compounds were prepared from a phenol novolac, a curing agent, and several fillers. The flowability of the compounds containing fly ash and artificial Zeolite as a filler, mentioned above, was superior to that of the compounds containing glass fiber (GF), calcium carbonate (CaCO3), or talc as a filler. The phenolic composites were prepared from the above molding compounds by transfer molding. The phenolic composite containing Ca? Ze had most superior heat resistance, electrical insulation, and flexural strength, though in the lastly listed property it ranked next to the GF‐filled composite. The linear expansion coefficient of the composite containing Ca? Ze was as low as almost isotropic. The reasons of obtaining these excellent properties were thought to be as follows: (1) Ca? Ze could finely be dispersed in the phenolic resin to bring good impregnation. (2) The surface chemical and physical interaction between the resin and Ca? Ze was higher than that between the resin and the other fillers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
4.
The conditions and a method of preparing new molding compositions and filled compression‐molding materials from melamine–formaldehyde–cyclohexanone resins are described. The resins were obtained from melamine solutions in a reactive solvent prepared by the reaction of 1 mol of cyclohexanone with 7 mol of formaldehyde. The fillers were wood powder and sulfite cellulose. The thermal properties of the samples prepared from the compositions were studied with dynamic thermal analysis, thermogravimetry, and differential scanning calorimetry analysis. Selected mechanical properties [Brinell hardness, unnotched impact strength (Charpy method), and bending strength] of the cured resins were also measured. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
5.
Masaki Iida Taku Goto Koichi Mayumi Rina Maeda Kazuto Hatakeyama Tsuyohito Ito Yoshiki Shimizu Kohzo Ito Yukiya Hakuta Kazuo Terashima 《Polymer Composites》2021,42(10):5556-5563
In recent years, rapid progress in the development of flexible electronic devices has increased the demand for materials with low Young's modulus and high thermal conductivities. In this study, we successfully fabricated such composites with polyrotaxane (PR) by applying highly concentrated graphene nanoplates (GNPs). A high thermal conductivity of 25 W m−1 K−1 was achieved along the in-plane direction of the composite while maintaining a low Young's modulus of 147 MPa at 35 vol% of GNPs. This thermal conductivity is higher than those achieved with PR composites containing 56 vol% of hexagonal boron nitride and 37 vol% of aligned carbon nanofiber/carbon nanotubes. 相似文献
6.
Synergistic effect of copper and multiwalled carbon nanotube on thermal and mechanical properties of high‐density polyethylene (HDPE)‐matrix composite was evaluated. Attrition mill was employed to prepare the hybrid powder. Reinforcing the polymer‐matrix was carried out using different contents of simultaneously (Sim) and separately (Sep) milled powders as hybrid fillers. X‐ray diffraction and microscopy results show different trends of particle size for Sep and Sim affected by both milling time and volume fraction ratio. Thermal characterization indicates that conductivity was enhanced by 90% and thermal expansion was reduced to 53% of neat HDPE. Young's modulus and tensile strength were improved by 7.8 and 1.22 times of neat HDPE, respectively. Also, characteristics of Sim‐reinforced composites exhibited better correlated relation with milling time compared with erratic behavior of Sep. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45397. 相似文献
7.
Dimitra Kourtidou Elli Symeou Zoi Terzopoulou Isaak Vasileiadis Thomas Kehagias Eleni Pavlidou Theodora Kyratsi Dimitrios N. Bikiaris Konstantinos Chrissafis 《Polymer Composites》2021,42(3):1181-1197
Crosslinked polyethylene is a promising polymer regarding its mechanical properties and wear resistance, predominantly used in pipework systems. However, it suffers from low thermal conductivity, which limits its application in geothermal heating/cooling systems. In this work, crosslinked high-density polyethylene (PEX) composites with spherical graphite (SG) as a reinforcing filler are examined in terms of their thermal and mechanical properties. Thermal conductivity measurements showed a significant improvement of the thermal conductivity of PEX with increasing filler content (40.6% augmentation for 5 wt% SG content), while the experimental data are in good agreement with the Chauhan theoretical model for spherical particles. Tensile tests revealed that the elastic modulus of PEX/SG composites presented a considerable improvement (23.6% augmentation for 5 wt% SG content). Various micromechanical models for the prediction of the composites' elastic behavior were applied to the experimental data, which present a satisfactory agreement with the Takayanagi I two-phase model for low concentrations of SG, and the Takayanagi II two-phase model for higher filler content. 相似文献
8.
The polyolefin and poly(ethylene terephthalate) (PET) products are the mostly current communal waste materials. The waste polymeric materials are generally difficult to separate, and therefore a processing of nonseparated materials presents an interesting alternative suggestion. The aim of our work was to analyze the possibility of reprocessing of polyolefins by a relative low temperature, and to study the effect of addition of PET solid powder on processing and application properties. The results of our investigations allow to conclude that the solid PET powder may play a role of a heterogeneous nucleator, acting as an α‐phase promoter of an isotactic polypropylene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
9.
S. G. Hymlin Rose P. G. Kuppusamy B. R. Tapas Bapu Muruganantham Ponnusamy 《乙烯基与添加剂工艺杂志》2023,29(3):427-434
In this study a highly flexible microwave shielding material was fabricated by solution casting method utilizing Nickel and biocarbon particles in PVA matrix and characterized for mechanical, magnetic, and microwave shielding properties. The main aim of this study was to prove the significant role of magnetic particles in electromagnetic interference (EMI) shielding along with conductive particles. The results show that the addition of Ni-biocarbon hybrid particle increases the shielding properties up to 56.5 dB at 20 GHz. The magnetic permeability increased gradually with the inclusion of Ni particles with a highest magnetization, coercivity, and retentivity of 1250 E−6 emu, −9000 G, and 1100 E−6 emu. Similarly the mechanical results show that adding biocarbon enhances the composite's mechanical properties. A highest tensile strength, tear strength, elongation, and hardness are noted as 38, 168 MPa, 18.4%, and 36 Shore-D. Comparatively, the hardness and elongation% of composite designations contains 3 and 5 vol% of hybrid particles have increased by 9% and 26%, respectively, in comparison to composite containing only 5 vol% of biocarbon with PVA. Scanning electron microscope fractography indicates biocarbon particles reduce voids and improve adhesion. These flexible EMI shielding composites could be used in telecommunication and other wave transmitting devices in engineering applications. 相似文献
10.
Ali Rıza Tarakcılar 《应用聚合物科学杂志》2011,120(4):2095-2102
In this study, rigid polyurethane foams that contain up to 5.0 wt % fly ash (FA) being a by‐product of thermal power stations and being cheap source were successfully produced using a polyurethane injection machine. The effects of FA content on the thermal conductivity, compressive strength, and flammability were investigated. The morphology of the cell was observed under a special microscope. The incorporation of FA in rigid polyurethane foams may dramatically decrease production costs and reduce environmental pollution. In addition, the effects of intumescent flame retardant composed of ammonium polyphosphate and pentaerythritol were examined in pure rigid polyurethane foams and FA‐rigid polyurethane foams. It was found that 5.0 and 7.5 wt % intumescent flame retardant loadings enhanced the thermal stability and improved the flammability resistance of the foams. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
11.
12.
Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X‐ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m?1 °C?1 and 34 ppm/°C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
13.
A semirigid and amorphous commercial liquid‐crystalline copolyester (Rodrun) was filled with mica and calcium carbonate (up to 25 wt %) by direct injection molding. The fillers led to decreases in the processability, as observed by torque increases, but maintained the thermal resistance of Rodrun. The effects of the two fillers on the modulus of elasticity, ductility, and tensile strength were the same or very similar. The decrease in the tensile strength (20% for a 10% filler content) was compensated by a generally slight increase in the modulus of elasticity, whatever the filler content was. This balance of properties found in these new liquid‐crystalline‐polymer‐based materials and the important savings that the fillers bring may spread the applications of these materials' matrices. © 2003 Wley Periodicals, Inc. J Appl Polym Sci 88: 998–1003, 2003 相似文献
14.
Samples of commercial unsaturated polyester (UPE) resin, filled with phase‐changeable fillers (PCMs), were prepared, and the thermal and mechanical properties of the cured samples were examined. Fillers chosen were paraffin and Wood's metal. Samples were prepared by making dispersions of these fillers in liquid unsaturated polyester followed by curing with methyl ethyl ketone peroxide (MEKP) and conaphtanate and rigid thermoset samples filled with PCM particles were obtained. The thermal and mechanical behaviors of such a filled composite around the melting points of fillers are very interesting. Effects of varying proportions of PCM on mechanical and thermal properties of final products were examined. The samples show thermal melting behavior without undergoing a change in physical state. Decreases in the maximum working temperature from 75 to 53°C for metal‐filled samples and from 75 to 43°C for paraffin‐filled samples were observed by using dynamic mechanical thermal analysis. Differential scanning calorimetry indicated that heat absorption of paraffin samples were higher than that of metal‐filled samples. For paraffin‐filled samples, heats of fusion were 3.44 cal/g for 10% filled sample and 6.35 cal/g for 20% filled sample. For Wood's metal‐filled samples, heats of fusion were 1.18 cal/g for 10% metal‐filled sample and 1.54 cal/g for 20% metal‐filled sample. Surface hardness was tested with Shormeter D. Surface hardness of metal‐filled composites varied from 86 to 34 shore D at 21°C and 80.6 to 35 shore D at 80°C. For paraffin‐filled samples, surface hardness changed from 86 to 42 shore D at 21°C and from 80.6 to 13 shore D. Morphology of the samples was determined by scanning electron microscopy, of the crack surfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 832–838, 2006 相似文献
15.
Water uptake characteristics and some mechanical properties of polypropylene composites containing three types of natural fillers, purified α‐cellulose, wastepaper fibers, and wood flour were studied. The fiber contents were 15, 25, and 35% by weight. Two percent maleic anhydride polypropylene (MAPP) was also added to the mix, as the compatibilizer agent. Mixing process was performed in a Brabender Plasticorder until a constant torque was reached. Composites made out of these combinations were then pressed in a laboratory press and ASTM standard test specimens were cut out of the sheets. Water absorption and tensile tests were performed on these specimens. The results showed a significant difference between the various filler types regarding water uptake. Water uptake also increased by the increase in filler content. Tensile strength and elongation at break in composites declined when compared with pure polypropylene, but their modulus of elasticity increased. Among the three types of fillers, no significant discrepancies were observed in terms of improving mechanical properties in composites. Filler content increase had no drastic effect regarding strength improvement. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 941–946, 2003 相似文献
16.
Ronilson Vasconcelos Barbosa Ricardo Baumhardt‐Neto Raquel Santos Mauler Carlos Jos Perez Gorga Cludia Gazzana Schneider 《应用聚合物科学杂志》2004,92(3):1658-1665
The pyrolysed oil shale (POS) obtained from the pyrolysis of bituminous rock was used as filler in poly(ethylene‐co‐vinyl alcohol) (EVAL). The effects of vinyl alcohol content in the EVAL and the particle size of pyrolysed oil shale in the mechanical properties were investigated. The EVAL was prepared by hydrolysis of poly(ethylene‐co‐vinyl acetate) (EVA) with 8 and 18 wt % of vinyl alcohol content. The composites were prepared in a rotor mixer at 180°C with concentration of pyrolysed oil shale up to 5 wt %. Stress–strain plots of compression‐molded composites showed a synergic behavior in the mechanical properties for low concentrations (1–5 wt %) of POS in all particle sizes and EVAL used. Such behavior indicates a close packing and strong interactions between the inorganic filler and the polymer. Increasing of the vinyl alcohol content of EVAL improved the compatibility between the polymer and filler, but decreasing the POS particle size had no effect on the properties. The modulus and the ultimate tensile strength also increased in all concentrations of POS for both EVAL. Mechanical properties and dynamic mechanical analysis also demonstrated the compatibility between EVAL and POS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1658–1665, 2004 相似文献
17.
The mechanical properties of flyash‐filled natural rubber were investigated and compared with those filled with calcium carbonate. A number of composites with varying percentage of the fillers were prepared using a two‐roll mill and molded on compression molding press. Specimens were subjected to mechanical testing. The properties studied were tensile strength, modulus at various elongations, hardness, density, etc. From the results it was observed that flyash‐filled composites were better in mechanical properties compared to those filled with calcium carbonate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 995–1001, 2002 相似文献
18.
The effects of the addition of LiCl and CsCl salts to Li‐ and Cs‐neutralized styrene‐co‐methacrylate ionomers, respectively, on the mechanical properties and morphology of the ionomers were studied. It was observed that with increasing inorganic salt contents, the ionic modulus increased, and this indicated that the inorganic salts in the ionomers acted as fillers. However, the type of salt did not affect the increase in the ionic modulus. It was also found that the addition of the inorganic salts did not change the matrix glass‐transition temperatures of the ionomers strongly but reduced the cluster glass‐transition temperature significantly and slowly for the LiCl‐ and CsCl‐containing ionomers, respectively. In addition, with increasing salt contents, a small‐angle X‐ray scattering peak shifted to slightly lower angles. These findings suggested that some of the inorganic salts resided in the multiplet with the ionic groups of the ionomers, acting as plasticizers. The presence of an X‐ray diffraction peak for the polymers containing a relatively large amount of CsCl indicated that the CsCl salt formed phase‐separated domains at sufficiently high salt contents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
19.
Natural rubber was reinforced with a high loading of a cardanol–formaldehyde resin prepared from cashew nut shell liquid. Cardanol–formaldehyde resins, both resoles and novolaks, were synthesized from cardanol, which was extracted from cashew nut shells. This was done by the condensation polymerization of cardanol and formaldehyde in the presence of base and acid catalysts. The cardanol–formaldehyde resole with the highest yield (ca. 75%) was prepared with a formaldehyde/cardanol molar ratio of 2.0 at pH 8.0 and 90°C for 8 h. The cardanol–formaldehyde novolak with the highest yield (ca. 80%) was prepared with a formaldehyde/cardanol molar ratio of 0.8 at pH 2.2 and 100°C for 7 h. Fourier transform infrared and 13C‐NMR were employed to characterize the chemical structures of the obtained cardanol–formaldehyde resins. The resins were compatible with natural rubber in various formulations. The cured behaviors of natural rubber blended with the cardanol–formaldehyde resole and novolak resins were investigated. The cured behaviors of cardanol–formaldehyde resole and cardanol–formaldehyde novolak samples were different, reflecting differences in their chemical reactivities. Furthermore, the incorporation of cardanol–formaldehyde resins into natural rubber provided significant improvements in mechanical properties such as the hardness, tensile strength, modulus at 100 and 300% elongation, and abrasion resistance. However, the elongation at break and compression set of the blends decreased as expected. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1997–2002, 2007 相似文献
20.
Chameswary Janardhanan Dhanesh Thomas Ganesanpotti Subodh Soumya Harshan Jacob Philip Mailadil T. Sebastian 《应用聚合物科学杂志》2012,124(4):3426-3433
Butyl rubber–strontium cerium titanate (BS) composites have been prepared by hot pressing. The tensile tests show that the BS composites are flexible. The dielectric properties of the composites have been investigated at 1 MHz and 5 GHz as a function of ceramic contents. The composite with volume fraction 0.43 of ceramic filler has a dielectric constant (εr) of 11.9 and dielectric loss (tan δ) 1.8 × 10?3 at 5 GHz. The measured values of εr are compared with the effective values calculated using different theoretical models. The thermal conductivity of the composites is found to increase with ceramic contents and reaches a value of 4.5 Wm?1 K?1 for maximum filler loading 0.43 volume fraction. The coefficient of thermal expansion of the composites decreases gradually with filler loading and reaches a minimum value of 30.2 ppm °C?1 at a volume fraction 0.43. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献