首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Organic–inorganic hybrid UV‐curable coatings were synthesized through blending UV‐curable components and stabilized titania sol prepared via a sol–gel process of tetrabutyl titanate (TBT) with three different stabilizers, acetylacetone (Acac), isopropyl tri(dioctyl)pyrophosphato titanate coupling agent (TTPO) and a polymerizable organic phosphoric acid (MAP). The size and the dispersion of titania particle in the UV‐cured organic matrix were dominated by the properties of these stabilizers. A cured hybrid film with titania particle size around 20 nm was obtained when TTPO was utilized as protection agent for the sol. It is interesting that the hardness and flexibility of the photocured hybrid films were improved simultaneously, in contrast to results with neat organic UV‐curable formulations. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
The thermal properties of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent, were investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical thermal analysis. DSC results showed that the presence of CNF had no pronounced influence on the heat of the cure reaction. However, the incorporation of CNF slightly improved the thermal stability of the epoxy. Furthermore, the storage modulus of the TGDDM/DDS epoxy was significantly enhanced, whereas the glass‐transition temperature was not significantly affected, upon the incorporation of CNFs. The storage modulus of 5 wt % CNF/epoxy composites at 25°C was increased by 35% in comparison with that of the pure epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 295–298, 2006  相似文献   

3.
A mixture of two epoxy resins, tetraglycidyl 4,4′‐diaminodiphenyl methane and bisphenol‐A diglycidylether, cured with 4,4′‐diaminodiphenyl sulfone, was used as matrix material for high‐performance epoxy hybrid nanocomposites containing organophilicly modified synthetic fluorohectorite and compatibilized liquid six‐arm star poly(propylene oxide‐block‐ethylene oxide) (abbreviated as PPO). The hydroxy end groups of the poly(propylene oxide‐block‐ethylene oxide) were modified, yielding a six‐arm star PPO with an average of two pendant stearate chains, two phenol groups, and two hydroxy end groups. The alkyl chains of the stearate end groups played an important role in tailoring the polarity of the polymer. Its phenol end groups ensured covalent bonding between liquid polymer and epoxy resin. Two different organophilic fluorohectorites were used in combination with the functionalized PPO. The morphology of the materials was examined by transmission electron microscopy. The hybrid nanocomposites were composed of intercalated clay particles as well as separated PPO spheres in the epoxy matrix. As determined by dynamic mechanical analysis, the prepared composites possessed glass‐transition temperatures around 220°C. Although the tensile moduli remain unaltered, the tensile strengths of the hybrid materials were significantly improved. The relatively high fracture toughness of the neat resin, though, was not preserved for the hybrid resins. Scanning electron microscopy of the fracture surfaces revealed extensive matrix shear yielding for the neat resin, whereas the predominant fracture mode of the hybrid nanocomposites was crack bifurcation and branching. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3088–3096, 2004  相似文献   

4.
Bicyclo[2.2.2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride (BCDA)‐based polyimide–clay nanocomposites were prepared from their precursor, namely polyamic acid, by a solution‐casting method. The organoclay was prepared by treating sodium montmorillonite (Kunipia F) clay with dodecyltrimethylammonium bromide at 80 °C. Polyamic acid solutions containing various weight percentages of organoclay were prepared from 4,4′‐(4,4′‐isopropylidenediphenyl‐1,1′‐diyldioxy)‐dianiline and BCDA in N‐methyl‐2‐pyrrolidone containing dispersed particles of organoclay at 20 °C. These solutions were cast on a glass plate using a Doctor's blade and then heated subsequently to obtain nanocomposite films. The nanocomposites were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal mechanical analysis, dynamic mechanical analysis, polarizing microscopy, scanning electron microscopy, transmission electron microscopy, wide‐angle X‐ray diffraction (WAXD) and thermogravimetric analysis. The glass transition temperature of the nanocomposites was found to be higher than that of pristine polymer. The coefficient of thermal expansion of the nanocomposites decreased with increasing organoclay content. WAXD studies indicated that the extent of silicate layer separation in the nanocomposite films depended upon the organoclay content. Tensile strength and modulus of the nanocomposite containing 1% organoclay were significantly higher when compared to pristine polymer and other nanocomposites. The thermal stability of the nanocomposites was found to be higher than that of pristine polymer in air and nitrogen atmosphere. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
The nature of the substituent in 4,4′‐bis‐(diaminodiphenyl) methane (DDM) hardener on the cure kinetics, mechanical, and flame retardant properties of N,N,N′,N′‐tetraglycidyl diaminodiphenyl methane (TGDDM) resin is investigated in comparison with unsubstituted DDM and widely used 4,4′‐bis‐(diaminodiphenyl) sulfone hardeners. Dynamic differential scanning calorimetry (DSC) and cure rheology studies showed that the substitution decreased the reactivity of the amine. An electron‐withdrawing chlorine substituent was found to be more effective than an electron‐releasing methyl group in reducing the amine reactivity. Substituted and unsubstituted DDM hardeners showed two peaks in their DSC thermograms that were due to steric hindrance in the former and deficiency of amine in the latter. Substitution showed its effect on the mechanical properties and glass‐transition temperature. The flexural modulus was increased; however, the Izod impact and glass‐transition temperature were decreased in substituted amine systems. The limiting oxygen index results showed higher flame retardancy in the chlorine substituted hardener system compared to other hardener systems that were studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 480–491, 2006  相似文献   

6.
Thermally stable polyimide/titania (PI/TiO2) hybrid nanocomposite films have been successfully synthesized through the in situ formation of TiO2 within a PI matrix via sol‐gel process. Poly(amic acid) (PAA) solution is prepared from 3,5‐diamino benzoyl amino phenyl‐14H‐dibenzo[a,j]xanthene and 4,4′‐(hexaflouroisopropylidene)diphthalic anhydride in N‐methyl‐2‐pyrrolidinone solvent. The different amounts of tetraethyl orthotitanate and actylacetone are incorporated into PAA matrix, and then thermally imidized to form PI/TiO2. The chelating agent, acetylacetone, was applied to reduce the gelation rate of titanium alkoxide. Thermal decomposition temperatures of nanocomposites with a 10% weight loss were in excess of 500°C, and char yields higher than 63% at 800°C in nitrogen. The chemical and morphological structures of the hybrid nanocomposites were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and transmission electron microscopy. The results show that the TiO2 particles are well dispersed in the PI matrix with particle size between 10 and 30 nm in diameter. POLYM. COMPOS., 35:1486–1493, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

8.
A series of copolyimide/SiO2 hollow sphere thin films were prepared successfully based on bis[3,5‐dimethyl‐4‐(4‐aminophenoxy)phenyl]methane and 9,9‐bis(4‐(4‐aminophenoxy)phenyl)fluorene (molar ratio = 3 : 1) as diamine, and 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) as dianhydride, with different wt % SiO2 hollow sphere powder with particle size 500 nm. Some films possessed excellent dielectric properties, with ultralow dielectric constants of 1.8 at 1 MHz. The structures and properties of the thin films were measured with Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and dynamic mechanical thermal analysis. The polyimide (PI) films exhibited glass‐transition temperatures in the range of 209– 273°C and possessed initial thermal decomposition temperature reaching up to 413–477°C in air and 418–472°C in nitrogen. Meanwhile, the composite films were also exhibited good mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

10.
Tetra‐functional epoxy resin N,N,N′,N′‐tetraglycidyl‐3,3′‐diethyl‐4,4′‐diaminodiphenylmethane (TGDEDDM) was synthesized and characterized. The viscosity of TGDEDDM at 25°C was 7.2 Pa·s, much lower than that of N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM). DSC analysis revealed that the reactivity of TGDEDDM with curing agent 4,4′‐diamino diphenylsulfone (DDS) was significantly lower than that of TGDDM. Owing to its lower viscosity and reactivity, TGDEDDM/DDS exhibited a much wider processing temperature window compared to TGDDM/DDS. Trifluoroborane ethylamine complex (BF3‐MEA) was used to promote the curing of TGDEDDM/DDS to achieve a full cure, and the thermal and mechanical properties of the cured TGDEDDM were investigated and compared with those of the cured TGDDM. It transpired that, due to the introduction of ethyl groups, the heat resistance and flexural strength were reduced, while the modulus was enhanced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40009.  相似文献   

11.
Aromatic polyesters were prepared and used to improve the brittleness of bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane and o,o′‐diallyl bisphenol A (Matrimid 5292 A/B resin). The aromatic polyesters included PEPT [poly(ethylene phthalate‐co‐ethylene terephthalate)], with 50 mol % of terephthalate, PEPB [poly(ethylene phthalate‐co‐ethylene 4,4′‐biphenyl dicarboxylate)], with 50 mol % of 4,4′‐biphenyl dicarboxylate, and PEPN [poly(ethylene phthalate‐co‐ethylene 2,6‐naphthalene dicarboxylate)], with 50 mol % 2,6‐naphthalene dicarboxylate unit. The polyesters were effective modifiers for improving the brittleness of the bismaleimide resin. For example, inclusion of 15 wt % PEPT (MW = 9300) led to a 75% increase in fracture toughness, with retention in flexural properties and a slight loss of the glass‐transition temperature, compared with the mechanical and thermal properties of the unmodified cured bismaleimide resin. Microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism was assessed as it related to the morphological and dynamic viscoelastic behaviors of the modified bismaleimide resin system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2352–2367, 2001  相似文献   

12.
The bisphenol‐containing 4,4′‐biphenylene moiety was prepared by the reaction of 4,4′‐bis(methoxymethyl) biphenyl with phenol in the presence of p‐toluenesulfonic acid. The bisphenol was end‐capped with the cyanate moiety by reacting with cyanogen chloride and triethylamine in dichloromethane. Their structures were confirmed by Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. Thermal behaviors of cured resin were studied by differential scanning calorimetry, dynamic mechanical analysis, and TGA. The flame retardancy of cured resin was evaluated by limiting oxygen index (LOI) and vertical burning test (UL‐94 test). Because of the incorporation of rigid 4,4′‐biphenylene moiety, the cyanate ester (CE) resin shows good thermal stability (Tg is 256°C, the 5% degradation temperature is 442°C, and char yield at 800°C is 64.4%). The LOI value of the CE resin is 42.5, and the UL‐94 rating reaches V‐0. Moreover, the CE resin shows excellent dielectric property (dielectric constant, 2.94 at 1 GHz and loss dissipation factor, 0.0037 at 1 GHz) and water resistance (1.08% immersed at boiling water for 100 h). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
In this paper, a new type of organophilic montmorillonite, co‐treated with cetyltrimethyl ammonium bromide (CTAB) and 4,4′‐diphenymethylate diisocyanate (MDI), was modified and applied to prepare polyurethane/montmorillonite nanocomposites via in situ polymerization. The nanoscale montmorillonite layers were exfoliated and dispersed relatively homogeneously in the polyurethane matrix, and characterized by X‐ray diffraction and transmission electron microscopy. The thermal degradation temperature of the nanocomposites increased, as compared with pristine polyurethane. Dynamic mechanical analysis confirmed the constraining effect of exfoliated montmorillonite layers on polyurethane chains, which benefited the increased storage modulus and increased glass transition temperature. Tensile tests showed that the exfoliated nanocomposites were reinforced and toughened by the addition of nanometer‐size montmorillonite layers. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Vinyl acetate (VAc) was solution‐polymerized at 40°C and 50°C using 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as an initiator and methanol as a solvent, and effects of polymerization temperature and initiator concentration were investigated in terms of conversion of VAc into poly (vinyl acetate) (PVAc), degree of branching (DB) for acetyl group of PVAc, and molecular weights of PVAc and resulting poly(vinyl alcohol) (PVA) obtained by saponifying with sodium hydroxide. Slower polymerization rate by adopting ACVA and lower viscosity by methanol proved to be efficient in obtaining linear high‐molecular‐weight (HMW) PVAc with high conversion and HMW PVA. PVA having maximum number–average degree of polymerization (Pn) of 4300 could be prepared by the saponification of PVAc having maximum Pn of 7900 polymerized using ACVA concentration of 2 × 10?5 mol/mol of VAc at 40°C. Moreover, low DB of below 1 could be obtained in ACVA system, nevertheless of general polymerization temperatures of 40°C and 50°C. This suggests an easy way for producing HMW PVA with high yield by conventional solution polymerization without using special methods such as low‐temperature cooling or irradiation. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 4831–4834, 2006  相似文献   

15.
A series of co‐polyimide/attapulgite (co‐PI/AT) nanocomposites have been successfully fabricated from anhydride‐terminated polyimide (PI) and γ‐aminopropyltriethoxysilane (APTES)‐modified fibrous attapulgite (AT). Co‐PI was prepared from 4,4′‐diaminodiphenyl ether (ODA), 4,4′‐oxydiphthalic anhydride (ODPA), and 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) by using the method of chemical imidization. Different amount of AT (0, 1, 3, 5, 7 wt%) were introduced into co‐PI via strong covalent interactions between terminal anhydride and amino groups. The properties of co‐PI/AT nanocomposites such as morphology, thermal stability, mechanical properties, and UV transparency were investigated to illustrate the contribution of the introduction of AT into the PI matrix. FTIR spectra and SEM images revealed that network structures between co‐PI and AT are formed, which endowed the nanocomposites with outstanding thermal and mechanical properties. The co‐PI/AT nanocomposites exhibited excellent thermal and thermo‐oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature increasing to the ranges of 502–510°C and 555–562°C from 480°C to 526°C for the pristine co‐PI, respectively. The glass transition temperatures of these co‐PI/AT nanocomposites increased to the range of 231–238°C from 222°C for pure co‐PI. The co‐PI/AT nanocomposites films were found to be transparent, flexible, and tough. By incorporating 5 wt% AT into the co‐PI matrix, the tensile strength, elongation at break, and Young's modulus of the co‐PI/AT nanocomposites reached 110.7 MPa, 14.5%, and 1.2 GPa, respectively, which are 50%, 120%, and 80% increased compared with the values of pristine PI. POLYM. COMPOS., 35:86–96, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
2‐(4‐Aminophenyl)‐5‐aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo‐ and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4‐phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3′,4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97–4.38 dL/g (c = 0.5 g/dL, in DMAc, 30°C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307–434°C and the 10% weight loss temperature is in the range of 556–609°C under air. The polyimide films possess strength at break in the range of 185–271 MPa, elongations at break in the range of 6.8–51%, and tensile modulus in the range of 3.5–6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5871–5876, 2006  相似文献   

17.
1,3‐Phenylene bisoxazoline is synthesized and characterized. The optimal synthetic conditions for yield (92%) are as follows: reaction temperature = 115°C; ratio (mol) of ethanolamine to 1,3‐dicyanobenzene = 2.5 : 1; ratio (mol) of zinc acetate to 1,3‐dicyanobenzene = 0.055; reaction time = 6 h. 4,4′‐diamonodiphenyl methane‐based benzoxazine and its oligomers (Oligo‐Da) are synthesized and characterized. The curing behavior and properties of the Oligo‐Da/1,3‐PBO copolymer resins are investigated. It was found that the cure induction time and cure time of the molten mixture from Oligo‐Da/1,3‐PBO could be reduced, compared with that from Oligo‐Ba/1,3‐PBO, especially above 175°C. The reason lies in that the bisphenol generated in ring opening of Ba has more steric hindrance than the phenol generated in ring opening of Da because of isopropyl group. Thus, the Mannich bridge structure in the Da polymer is relatively much easier to form between the ortho positions of phenolic hydroxyl groups than that in the Ba polymer. Curing temperature of Oligo‐Da/1,3‐PBO could be lowered with triphenylphosphite as a catalyst. SEM results confirm that 1,3‐PBO could toughen Oligo‐Da system when the mol ratio of 1,3‐PBO and Oligo‐Da is ≤1 because of the formation of ether–amide bonds. However, a brittle fracture surface is observed because of too higher crosslinking density of the cured resin, when the mol ratio of 1,3‐PBO and Oligo‐Da is >1. The cured resin from Oligo‐Da/1,3‐PBO has superior heat resistance, electrical insulation, and water resistance than that from Oligo‐Ba/1,3‐PBO. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1359–1366, 2006  相似文献   

18.
O,O′‐diallyl bisphenol A (DBA) and N,N′‐diallyl p‐phenyl diamine (DPD) were used for the reactive diluents of 4,4′‐bismaleimidodiphenol methane (BDM). The objective was to obtain a modified BDM resin system suitable for resin transfer molding (RTM) process to prepare the advanced composites. The processing behavior was determined by time–temperature–viscosity curves, gel characteristics, and differential scanning calorimetry (DSC). The injection temperature of the resin system in RTM could be 80°C, at which its apparent viscosity was only 0.31 Pa/s, and the apparent viscosity was still less than 1.00 Pa/s after the resin was held at 80°C for 16 h. The gel time test result indicated that at low temperatures, the reactivity of the resin system is low, whereas at high temperatures, the resin could cure very fast, which was beneficial to RTM. The postcure of the cured resin at a given temperature was necessary because the resin had a wide and flat cure exothermic peak, observed by DSC curve. The cured resin displayed both high heat and hot/wet resistance and high mechanical properties, especially tensile strength, tensile modulus, and flexural strength at room temperature, which reached 96.2 MPa, 4.8 GPa, and 121.4 MPa, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2245–2250, 2001  相似文献   

19.
Two new aromatic diamines, 2,2′‐dibromo‐4,4′‐oxydianiline (DB‐ODA 4 ) and 2,2′,6,6′‐tetrabromo‐4,4′‐oxydianiline (TB‐ODA 5 ), have been synthesized by oxidation, bromination, and reduction of 4,4′‐oxydianiline (4,4′‐ODA). Novel polyimides 6a–f and 7a–f were prepared by reacting DB‐ODA ( 4 ) and TB‐ODA ( 5 ) with several dianhydrides by one‐step method, respectively. The inherent viscosities of these polyimides ranged from 0.31 to 0.99 dL/g (0.5 g/dL, in NMP at 30°C). These polyimides showed enhanced solubilities compared to those derived from 4,4′‐oxydianiline and corresponding dianhydrides. Especially, polyimides 7a , derived from rigid PMDA and TB‐ODA ( 5 ) can also be soluble in THF, DMF, DMAc, DMSO, and NMP. These polyimides also exhibited good thermal stability. Their glass transition temperatures measured by thermal mechanical analysis (TMA) ranged from 251 to 328°C. When the same dianhydrides were used, polyimides 7 containing four bromide substituents had higher glass transition temperatures than polyimides 6 containing two bromide substituents. The effects of incorporating more polarizable bromides on the refractive indices of polyimides were also investigated. The average refractive indices (nav) measured at 633 nm were from 1.6088 to 1.7072, and the in‐plane/out‐of‐plane birefringences (Δn) were from 0.0098 to 0.0445. It was found that the refractive indices are slightly higher when polyimides contain more bromides. However, this effect is not very obvious. It might be due to loose chain packing resulted from bromide substituents at the 2,2′ and 2,2′,6,6′ positions of the oxydiphenylene moieties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Tert‐butyl hydroquinone–based poly(cyanoarylene ether) (PENT) was synthesized by the nucleophilic aromatic substitution reaction of 2,6‐dichlorobenzonitrile with tert‐butyl hydroquinone using N‐methyl‐2‐pyrrolidone (NMP) as solvent in the presence of anhydrous potassium carbonate in a nitrogen atmosphere at 200°C. PENT‐toughened diglycidyl ether of bisphenol A epoxy resin (DGEBA) was developed using 4,4′‐diaminodiphenyl sulfone (DDS) as the curing agent. Scanning electron micrographs revealed that all blends had a two‐phase morphology. The morphology changed from dispersed PENT to a cocontinuous structure with an increase in PENT content in the blends from 5 to 15 phr. The viscoelastic properties of the blends were investigated using dynamic mechanical thermal analysis. The storage modulus of the blends was less than that of the unmodified resin, whereas the loss modulus of the blends was higher than that of the neat epoxy. The tensile strength of the blends improved slightly, whereas flexural strength remained the same as that of the unmodified resin. Fracture toughness was found to increase with an increase in PENT content in the blends. Toughening mechanisms like local plastic deformation of the matrix, crack path deflection, crack pinning, ductile tearing of thermoplastic, and particle bridging were evident from the scanning electron micrographs of failed specimens from the fracture toughness measurements. The thermal stability of the blends were comparable to that of the neat resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3536–3544, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号