首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Ni–Pt system is assessed using the CALPHAD method. The four fcc-based phases, i.e. disordered solid solution phase, Ni3Pt–L12, NiPt–L10 and NiPt3–L12, are described by a four-sublattice model. The calculated thermodynamic properties and order/disorder phase transformations are in good agreement with the experimental data. In order to facilitate the assessment, first-principles pseudopotential calculations are also performed to calculate the enthalpy of formation at 0 K, and comparison with the assessed values is discussed. By combining the assessments of Al–Ni and Al–Pt, the Al–Ni–Pt ternary system is assessed within a narrow temperature range, focusing on the fcc-based phases and their phase equilibria with B2 phase.  相似文献   

3.
Q. Yue  Y.Q. Liu  M.Y. Chu  J.Y. Shen   《Calphad》2009,33(3):539-544
The Sn–V binary system was thermodynamically modeled using the CALPHAD approach combined with first-principles calculations. The predicted Gibbs free energy of the end-members in sublattice models of “ V 3Sn” phase by the first-principles calculations was used to describe the lattice stabilities. A set of thermodynamic parameters for the Sn–V system was obtained using the PanOptimizer program in Pandat software. The calculated phase diagram and thermodynamic properties agree well with the reported experimental data.  相似文献   

4.
Yuan Yuan  Jianhong Yi 《Calphad》2011,35(3):416-420
The phase diagram of the Co-Sm system has been assessed by applying the Calculation of Phase Diagram (CALPHAD) technique. Thermochemical and phase equilibrium information from the literature have been critically evaluated, and a series of self-consistent thermodynamic parameters capable of describing the Gibbs free energies of each phase of the system has been obtained. There are eight compounds in this system. Based on an analysis of experimental data and the crystal structures of the phases, SmCo5 was modeled as (Co,V a)0.833333(Co2,Sm)0.166667 and Sm2Co17 as (Co)0.833333(Sm)0.111111(Co2,Sm)0.055556. The remaining six intermetallic phases, Sm3Co,Sm9Co4, SmCo2, SmCo3, Sm2Co7, and Sm5Co19, were treated as stoichiometric compounds. Calculations based on these parameters can reproduce most of the experimental data very well.  相似文献   

5.
6.
Mei Li  Wei Han 《Calphad》2009,33(3):517-520
The Dy–Ni binary system has been thermodynamically assessed by means of the computer program Thermo-Calc. The Redlich–Kister polynomial was used to describe the solution phase, liquid (L). Ten compounds, Dy3Ni, Dy3Ni2, DyNi, DyNi2, DyNi3, Dy2Ni7, DyNi4, Dy4Ni17, DyNi5 and Dy2Ni7, were treated as stoichiometric phases. The parameters of the Gibbs energy expressions were optimized according to all the available experimental information of both the equilibrium data and the thermodynamic results. A set of self-consistent thermodynamic parameters of the Dy–Ni system has been obtained. The calculations agree well with the respective experimental data.  相似文献   

7.
Thermodynamic modelling of the Pb–Yb binary system was carried out with the help of the CALPHAD method. The liquid phase has been described with the association solution model with ‘ Pb1Y b2’ as an associated complex. The solution phases BCC_A2 and FCC_A1 were modelled with the sublattice formalism. The αPbYb_LT and βPbYb_HT Pb sub-stoichiometric intermetallic compounds, which have a homogeneity range, were treated with the formula (Pb,Y b)0.5(Y b)0.5 by a two-sublattice model with Pb and Yb on the first sublattice and Yb on the second one. Pb3Y b, Pb3Y b5 and PbY b2 have been treated as stoichiometric compounds. The calculations based on the thermodynamic modelling are in good agreement with the phase diagram data and experimental thermodynamic values.  相似文献   

8.
Dmitri Nassyrov  In-Ho Jung   《Calphad》2009,33(3):521-529
All available thermodynamic and phase diagram data of the Mg–Ge and Mg–Pb binary systems, and the Mg–Ge–Pb ternary system have been critically evaluated and all reliable data have been simultaneously optimized to obtain one set of model parameters for the Gibbs energies of the liquid and all solid phases as functions of composition and temperature. The liquid phase was modeled using the Modified Quasichemical Model in order to describe the strong ordering in Mg–Ge and Mg–Pb liquid. Mg2Ge–Mg2Pb solid solution phase was modeled with consideration of a solid miscibility gap. All calculations were performed using the FactSage thermochemical software.  相似文献   

9.
10.
I. Kainulainen  P. Taskinen  J. Gisby   《Calphad》2010,34(4):441-445
Thermodynamic properties and the phase equilibria of the Ni–Pb binary system were assessed by the CALPHAD (CALculation of PHase Diagrams) method using the available literature data. The phase diagram and the excess Gibbs energy values of the solution phases, molten alloy and the fcc solid solution were modelled using the Redlich–Kister polynomials. The experimental data was fitted by a least squares method using MTDATA software tool.  相似文献   

11.
12.
The phase diagram and thermodynamic properties of the Au–Ni system have been assessed from experimental thermodynamic and phase diagram data by means of the CALPHAD method. A consistent set of thermodynamic parameters for each phase was obtained. Good agreement is reached between the calculated and experimental results. The calculated congruent point is 1214.3 K and 42.6 at.% Ni and the critical point of the miscibility gap is 1089.5 K and 73.0 at.% Ni.  相似文献   

13.
J. Wang  H.S. Liu  L.B. Liu  Z.P. Jin   《Calphad》2007,31(4):545-552
Gibbs energy of hcp_A3 phase in the Ag–Sn binary system has been reassessed using compatible lattice stability. Combined with previous assessments of the Ag–Au and Au–Sn binary systems, the Sn–Ag–Au ternary system has been thermodynamically optimized using the CALPHAD method on the basis of available experimental information. The solution phases including liquid, fcc_A1, hcp_A3 and bct_A5, are modeled as substitutional solutions, while the intermediate compound Ag3Sn is treated using a 2-sublattice model because Au can be dissolved to a certain degree. The solubility of Ag in the Au–Sn intermediate phases, D024, Au5Sn, AuSn, AuSn2 and AuSn4, is not taken into account. Thermodynamic properties of liquid alloys, liquidus projection and several vertical and isothermal sections of this ternary system have been calculated, which are in reasonable agreement with the reported experimental data.  相似文献   

14.
The updated thermodynamic evaluation of the yttrium–oxygen (Y–O) system is presented. Thermodynamic model parameters of all phases, i.e., liquid, αα-Y, ββ-Y, αα- Y 2O3 and ββ- Y 2O3, have been derived by the least-squares minimization procedure using Thermo-Calc®software. The backward compatibility of the refined parameters with experimental data has been demonstrated by calculation of phase and property diagrams.  相似文献   

15.
L.L. Xu  J. Wang  H.S. Liu  Z.P. Jin 《Calphad》2008,32(1):101-105
The Pt–Si binary system was thermodynamically assessed using the CALPHAD method based on the available experimental data from the literature. The solution phases, including Liquid, Fcc_A1 (Pt) and Diamond_A4 (Si), were treated as substitutional solution phases, of which the excess Gibbs energies were expressed with Redlich–Kister polynomial functions. Meanwhile, the intermetallic compounds, PtSi, Pt6Si5, Pt2Si, Pt17Si8, Pt5Si2, Pt3Si and Pt25Si7, were modeled as stoichiometric compounds. Subsequently, a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases were obtained and the calculated values of phase diagram and thermodynamics were found to be in reasonable agreement with experimental data.  相似文献   

16.
17.
A thermodynamic study has been carried out on the Fe–Si–B ternary system, which is important in the development of transformer core materials and Ni-based filler metals. A regular solution approximation based on the sublattice model was adopted to describe the Gibbs energy for the individual phases in the binary and ternary systems. Thermodynamic parameters for each phase were evaluated by combining the experimental results from differential scanning calorimetry with literature data. The evaluated parameters enabled us to obtain reproducible calculations of the isothermal and vertical section diagrams. Furthermore, the glass-forming ability of this ternary alloy was evaluated by introducing thermodynamic quantities obtained from the phase diagram calculations into Davies–Uhlmann kinetic formulations. In this evaluation, the time–temperature-transformation (TTT) curves were obtained, which are a measure of the time required to transform to the minimum detectable mass of crystal as a function of temperature. The critical cooling rates calculated on the basis of the TTT curves enabled us to evaluate the glass-forming ability of this ternary alloy. The results show good agreement with the experimental data in the compositional amorphization range.  相似文献   

18.
19.
20.
J.S. Wang  S. Jin  W.J. Zhu  H.Q. Dong  X.M. Tao  H.S. Liu  Z.P. Jin   《Calphad》2009,33(3):561-569
The Pt–Ga–Ge ternary system was thermodynamically assessed by the CALPHAD (CALculaton of PHAse Diagram) approach with help of first-principles calculations. Firstly, the formation enthalpies of the Pt–Ge and Pt–Ga compounds were calculated by the first-principles method. Subsequently, the Pt–Ge system was modeled and the Pt–Ga system was re-assessed. The solution phases, Liquid, Diamond_A4 (Ge) and Fcc_A1 (Pt), were modeled as substitutional solutions, of which the excess Gibbs energy was formulated with the Redlich–Kister polynomial. The binary intermetallics, Ga7Pt3, Ga2Pt, Ga3Pt2, GaPt, Ga3Pt5, GaPt2, Ge2Pt, Ge3Pt2, GePt, Ge2Pt3 and GePt2, were treated as stoichiometric compounds while GePt3 was described with a two-sublattice model. Finally, based on the currently optimized Pt–Ga and Pt–Ge binary systems along with the already assessed Ga–Ge system, phase equilibria in the Pt–Ga–Ge ternary system were extrapolated. The isothermal sections at 473 K, 973 K and 1073 K of the ternary system were calculated, showing good agreement with the experimental data. In addition, the liquidus projection of the Pt–Ga–Ge ternary system was predicted using the obtained model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号