首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Westergaard function in conventional and also in modified form the rigid body rotation at the crack tip and near the crack edges of mode II cracks are obtained. An attempt is made to explain the deformed configuration of a mode II crack. The rotation at the end of the plastic shear strip ahead of the crack tip is shown to be independent of the stress intensity factor. The rotation field in the vicinity of a crack tip under combined mode I and mode II conditions is obtained.  相似文献   

2.
The mixed-mode thermoelectromechanical fracture problem for a functionally graded piezoelectric material (FGPM) strip with a penny-shaped crack is considered. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under thermal loading. The crack faces are supposed to be insulated thermally and electrically. The thermal and electromechanical problems are reduced to singular integral equations and solved numerically. The stress and electric displacement intensity factors are presented for different crack size, crack position and material nonhomogeneity.  相似文献   

3.
Ostryk  V. І. 《Materials Science》2020,56(1):97-105
Materials Science - We study the problems of compression and shear of an elastic strip containing a semiinfinite crack on the boundary of the strip and a rigid wall. The crack is opened in the...  相似文献   

4.
Twin-roll strip casting technology is a new one to produce austenite stainless steel strip directly. However, during this process, the cracking occurs usually on the surface of the steel strip. The technique of in situ tension in transmission electron microscope was used to observe and analyze the crack initiation and propagation in austenite stainless steel produced by twin-roll strip casting technology in this work. The results show that the crack initiates in dislocation free-zone firstly and then propagates along the direction vertical to the tensile force. The crack may propagate in continuous propagation way and discontinuous one respectively. When the shear stress on the close-packing face and the normal stress on the secondary close-packing face are at the same side of the tensile force, the cracks propagate continuously. However, when the shear stress on the close-packing face and the normal stress on the secondary close-packing face are in two sides, the cracks propagate discontinuously.  相似文献   

5.
Effects of electric boundary conditions on electroelastic field in a cracked piezoelectric strip are examined. Attention is focussed on an antiplane shear central crack normal to the strip surfaces. By decoupling equations and using the conformal mapping technique, expressions for electroelastic field in the piezoelectric strip are determined under the assumptions of an impermeable, permeable, or conducting crack, respectively. Comparison for the singularity near the crack tips among the obtained electroelastic fields is made.  相似文献   

6.
This paper deals with the propagation of shear waves in a wave guide which is in the form of an infinite elastic strip with free lateral surfaces. This strip contains a Griffith crack. An integral transform method is used to find the solution of the equation of motion from the linear theory for a homogeneous, isotropic elastic material. This method reduces the problem into an integral equation. It has been observed that only shear waves with frequencies less than a parameter-value, depending on the width of the wave guide, can propagate. The integral equation is solved numerically for a range of values of wave frequency and the width of the strip. These solutions are used to calculate the dynamic stress intensity factor, displacement on the surface of the crack and crack energy. The results are shown graphically.  相似文献   

7.
Transient response of a penny-shaped crack in a plate of a functionally graded piezoelectric material (FGPM) is studied under thermal shock loading conditions. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip, and that the crack faces are completely insulated. By using both the Laplace and Hankel transforms, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations which are solved numerically. The intensity factors vs. time for various crack size, crack position and material nonhomogeneity are obtained.  相似文献   

8.
Rigid body rotation is obtained at the points near the tip of a mode II crack in an infinite anisotropic plate. From Lekhnitskii's complex analysis the rotation is derived in terms of complex potentials and the material parameters. A relation of crack tip rotation is proposed by incorporating the mode II stress intensity factor and material constants of an anisotropic plate. The shear strain on the crack edge is calculated on the basis of rotation at the points lying on the crack edge.  相似文献   

9.
The problem of two periodic edge cracks in an elastic infinite strip located symmetrically along the free boundaries under thermal shock is investigated. It is assumed that the infinite strip is initially at constant temperature. Suddenly the surfaces containing the edge cracks are quenched by a ramp function temperature change. Very high tensile transient thermal stresses arise near the cooled surface resulting in severe damage. The degree of the severity for a subcritical crack growth mode is measured by determining the stresses intensity factors. The thermoelastic problem is treated as uncoupled quasi-static. The superposition technique is used to solve the problem. The thermal stresses obtained from the uncracked strip with opposite sign are utilized as the only external loads to formulate the perturbation problem. By expressing the displacement components in terms of finite and infinite Fourier transforms, a hypersingular integral equation is derived with the crack surface displacement as the unknown function. Numerical results for stress intensity factors are carried out and presented as a function of time, cooling rate, crack length, and periodic crack spacing.  相似文献   

10.
The finite element method is used to solve the problem of a strip containing a crack and subjected to a thermal shock on one edge. The solution of the edge crack problem is compared to the exact solution and it is shown that the FEM yields results with less than 1% error. The dependence of the accuracy of the solution on the time increment is examined. The problem of a strip containing an internal crack is then solved using the FEM. The effects of the Biot number, the length of the crack and the distance of the crack to the edge of the strip, on the transient stress intensity factors are analyzed.  相似文献   

11.
Summary The problem of an anti-plane shear crack embedded in a magnetoelectroelastic strip is investigated. The crack is assumed to be normal to the strip edges. By using the finite Fourier transform, the associated mixed boundary-value problem is reduced to triple series equations, then to singular integral equations. Solving the resulting equations analytically, the field intensity factors and energy release rates at the crack tips can be determined in explicit form. The influences of applied electric and magnetic loadings on the normalized energy release rate and mechanical strain energy release rate are presented graphically. Obtained results reveal that applied electric and magnetic loadings affect crack growth, depending on their directions and adopted fracture criteria. The derived solution is applicable to other cases including two collinear cracks distributed symmetrically in a magnetoelectroelastic strip, and a periodic array of collinear cracks in a magnetoelectroelastic plane.  相似文献   

12.
The response of a through-the thickness crack with finite dimensions to impact in a finite elastic strip is investigated in this study. The elastic strip is assumed to be subjected to anti-plane shear deformation. Laplace and Fourier transform were used to formulate the mixed boundary value problem. The dynamic stress intensity factor and crack opening displacement are obtained as a function of time and the strip width to crack length ratio, h/a. The results indicate that the intensity of the crack-tip stress field reaches a peak very quickly and then decreases in magnitude oscillating about the static value. In general, the dynamic stress intensity factor is higher for small h/a. Similar behavior has also been found for the crack surface displacement.  相似文献   

13.
基于线性电磁弹性理论,获得了压电-压磁板条中反平面裂纹尖端附近的奇异应力、电场和磁场。假设裂纹位于和板条边界平行的中心位置,并且裂纹是电磁渗透型的。利用Fourier变换,将裂纹面的混合边值问题化为对偶积分方程,即而归结为第二类Fredholm积分方程。通过渐近分析,得到了裂纹尖端附近应力、应变、电位移、电场、磁场和磁感的封闭表达式。结果表明,对于电磁渗透裂纹,电场强度因子和磁场强度因子总为0;板条的宽度对应力强度因子有显著的影响;能量释放率总为正值。  相似文献   

14.
The problem of a cracked, stiffened metallic sheet adhesively bonded by a composite patch is analyzed. The composite patch is assumed to be either an infinite orthotropic sheet or an infinite orthotropic strip normal to the crack. Due to the high stress concentration around the crack and on the interface, an elliptical disbond is assumed to exist around the crack. The crack is asymmetric with respect to the stiffener's locations as well as to the patch's center. The effect of thermal stresses in curing process is also considered. The fracture problem is solved by the displacement compatibility method, using the complex variable approach and the Fourier integral transform method.The problem is dealt with in two steps. First, starting with an uncracked, patched stiffened sheet, the stress at the prospective location of the crack is determined in a closed-form solution. The second step is to introduce a crack into the stiffened patched sheet. The multivalue of the analytical formulation is treated in detail to ensure proper implement in the computer. The results show that the effect of the stiffeners on the stress intensity factor is not significant for a crack fully covered by a patch.For the repairs by Boron/Epoxy patches, the difference in KI between the infinite sheet patch and the infinite strip model is only minor (less than 5 percent) in the absence of the curing thermal stresses and it becomes more pronounced when these stresses are taken into consideration. The stress intensity factor for a crack repaired by an infinite composite strip also can be estimated with a good or reasonable accuracy via a simplified analysis in which the patch is considered as an infinite strip in the first step and is treated as an infinite sheet in the second step of the solution procedure mentioned above.The latter simplified analysis is based on the approach originally proposed by Rose for a relatively simple repair configuration. For most cases, that approach seems to work well for the repair of a stiffened sheet by an infinite composite strip with the effects of thermal stresses and a disbond included. It should be emphasized that the present methodology can apply to the problem of a crack in a metallic stiffened sheet growing beyond the patch's boundary and also to the repairs by an infinite adhesively bonded composite strip parallel to the crack.  相似文献   

15.
Delamination of residually stressed thin film strips is analyzed to expose the dependence on strip width and film/substrate elastic mismatch. Isotropic films and substrates are assumed. The residual stress in the film is tensile and assumed to originate from mismatch due to thermal expansion or epitaxial deposition. Full and partial delamination modes are explored. In full delamination, the interface crack extends across the entire width of the strip and releases all the elastic energy stored in the strip as the crack propagates along the interface. The energy release rate available to propagate the interface crack is a strong function of the strip width and the elastic modulus of the film relative to that of the substrate. The energy release rate associated with full delamination is determined as a function of the interface crack length from initiation to steady-state, revealing a progression of behavior depending in an essential way on the three dimensionality of the strip. The dependence of the energy release rate on the remaining ligament as the interface crack converges with the strip end has also been calculated, and the results provide an effective means for inferring interface toughness from crack arrest position. A partial delamination propagates along the strip leaving a narrow width of strip attached to the substrate. In this case, the entire elastic energy stored in the strip is not released because the strain component parallel to the strip is not relaxed. A special application is also considered, in which a residually stressed metal superlayer is deposited onto a polymer strip. The energy release rate for an interface crack propagating along the interface between the polymer and the substrate is determined in closed form.  相似文献   

16.
A finite crack under transient anti-plane shear loads in a functionally graded piezoelectric material (FGPM) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPM vary continuously according to exponential functions along the thickness of the strip, and that the two layered strips is under combined anti-plane shear mechanical and in-plane electrical impact loads. The analysis is conducted on the electrically unified crack boundary condition. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Fredholm integral equations of the second kind in the Laplace transform domain. Then, a numerical Laplace inversion is performed and the dynamic intensities are obtained as functions of time and geometric parameters, which are displayed graphically.  相似文献   

17.
A mixed-mode thermoelectroelastic fracture problem of a functionally graded piezoelectric material strip containing two parallel axisymmetric cracks, such as penny-shaped or annular cracks, is considered in this study. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip and that the strip is under thermal loading. The crack faces are supposed to be insulated thermally and electrically. Using integral transform techniques, the problem is reduced to that of solving two systems of singular integral equations. Systematic numerical calculations are carried out, and the variations of the stress and electric displacement intensity factors are plotted for various values of dimensionless parameters representing the crack size, the crack location and the material non-homogeneity.  相似文献   

18.
The torsional impact response of a penny-shaped crack in a transversely isotropic strip is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Investigated are the effects of material nonhomogeneity and orthotropy and strip’s highness on the dynamic stress intensity factor. The peak of the dynamic stress intensity factor can be suppressed by increasing the shear moduli’s gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface. The dynamic behavior varies little with the increasing of the strip’s highness.  相似文献   

19.
Abstract: An experimental study was conducted to evaluate the tear energy of unfilled and 25 phr carbon black‐filled natural rubber with varying loading rates. The variation of the tear energy with far‐field sample strain rate between 0.01 to 10 s?1 was found to be different from tensile strip and pure shear specimens. Above a sample strain rate of 10 s?1, the tear energy calculated from either specimen was comparable. The differences in the tear energy derived from the tensile strip and pure shear specimens were attributed to differences in the local crack tip stress state and strengthening of the material due to strain‐induced crystallisation. Both of these factors resulted in crack speeds 3–4 times higher in the pure shear specimen as compared to the tensile strip specimen. Finite element analysis (FEA) indicated that fracture would initiate at the crack tip either when the strain energy density approached the material toughness or when the maximum principal stress and strain approached the material tensile strength and fracture strain, respectively. It was concluded that these parameters would be better than the tear energy in predicting fracture of natural rubber under dynamic loading.  相似文献   

20.
通过引入合适的保角映射, 利用复变函数方法研究了裂纹面上受反平面剪应力和面内磁电载荷共同作用下狭长磁电弹性体中半无限裂纹的断裂行为, 给出了磁电全非渗透型边界条件下裂纹尖端场强度因子和能量释放率的解析解。当狭长体高度趋于无限大时, 可得到无限大磁电弹性体中半无限裂纹的解析解。若不考虑磁场或电场作用, 所得解可退化为已知解。通过数值算例, 分析了裂纹面上受载长度、狭长体高度以及磁、电和机械载荷对能量释放率的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号