共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
卷积神经网络(Convolutional Neural Networks,CNN)是目前流行的语音识别模型之一,其特有卷积结构保证了语音信号时域和频域的平移不变性。但是CNN存在着对语音信号建模能力有所不足的问题。为此,将链接时序准则(CTC)应用在CNN结构中,构建端到端卷积神经网络(CTC-CNN)模型。同时,引入残差块结构,提出一种新的端到端深度卷积神经网络(CTC-DCNN)模型,并利用maxout激活函数对其进行优化。通过TIMIT和Thchs-30语音库测试实验,结果表明在中英文识别中,采用该模型比现有卷积神经网络模型,准确率分别提高约4.7%和6.3%。 相似文献
4.
基于Transformer的端到端语音识别系统获得广泛的普及,但Transformer中的多头自注意力机制对输入序列的位置信息不敏感,同时它灵活的对齐方式在面对带噪语音时泛化性能较差。针对以上问题,首先提出使用时序卷积神经网络(TCN)来加强神经网络模型对位置信息的捕捉,其次在上述基础上融合连接时序分类(CTC),提出TCN-Transformer-CTC模型。在不使用任何语言模型的情况下,在中文普通话开源语音数据库AISHELL-1上的实验结果表明,TCN-Transformer-CTC相较于Transformer字错误率相对降低了10.91%,模型最终字错误率降低至5.31%,验证了提出的模型具有一定的先进性。 相似文献
5.
语音信号在传播过程中会产生持续时长不等的音素特征,这些特征会影响语音识别的正确率.针对这一问题,提出一种多核卷积融合网络(Multi-core Convolution Fusion Network,MCFN),用于对不同长度的音素特征进行标准化,用标准化后的特征训练语音识别模型.此外,还利用子空间高斯混合模型(Subspace Gaussian Mixture Model,SGMM)将一般说话者的语音和信息加入到模型中,减小语料稀疏性对模型的影响.通过在Thchs30和ST-CMDS数据集对模型进行评估,结果显示,基于MCFN的BLSTM-CTC语音识别模型的识别字错误率(WER)较传统的语音识别模型有所降低. 相似文献
6.
针对语音情感数据集规模小且数据维度高的特点,为解决传统循环神经网络(RNN)长程依赖消失和卷积神经网络(CNN)关注局部信息导致输入序列内部各帧之间潜在关系没有被充分挖掘的问题,提出一个基于多头注意力(MHA)和支持向量机(SVM)的神经网络MHA-SVM用于语音情感识别(SER)。首先将原始音频数据输入MHA网络来训练MHA的参数并得到MHA的分类结果;然后将原始音频数据再次输入到预训练好的MHA中用于提取特征;最后通过全连接层后使用SVM对得到的特征进行分类获得MHA-SVM的分类结果。充分评估MHA模块中头数和层数对实验结果的影响后,发现MHA-SVM在IEMOCAP数据集上的识别准确率最高达到69.6%。实验结果表明同基于RNN和CNN的模型相比,基于MHA机制的端到端模型更适合处理SER任务。 相似文献
7.
8.
主流神经网络训练的交叉熵准则是对声学数据的每个帧进行分类优化,而连续语音识别是以序列级转录准确性为性能度量。针对这个不同,构建基于序列级转录的端到端语音识别系统。针对低资源语料条件下系统性能不佳的问题,其中模型使用卷积神经网络对输入特征进行处理,选取最佳的网络结构,在时域和频域进行二维卷积,从而改善输入空间中因不同环境和说话人产生的小扰动影响。同时神经网络使用批量归一化技术来减少泛化误差,加速训练。基于大型的语言模型,优化解码过程中的超参数,提高模型建模效果。实验结果表明系统性能提升约24%,优于主流语音识别系统。 相似文献
9.
10.
11.
由于人类情感的表达受文化和社会的影响,不同语言语音情感的特征差异较大,导致单一语言语音情感识别模型泛化能力不足。针对该问题,提出了一种基于多任务注意力的多语言语音情感识别方法。通过引入语言种类识别辅助任务,模型在学习不同语言共享情感特征的同时也能学习各语言独有的情感特性,从而提升多语言情感识别模型的多语言情感泛化能力。在两种语言的维度情感语料库上的实验表明,所提方法相比于基准方法在Valence和Arousal任务上的相对UAR均值分别提升了3.66%~5.58%和1.27%~6.51%;在四种语言的离散情感语料库上的实验表明,所提方法的相对UAR均值相比于基准方法提升了13.43%~15.75%。因此,提出的方法可以有效地抽取语言相关的情感特征并提升多语言情感识别的性能。 相似文献
12.
针对中文散文诗歌的自动生成,提出一种基于循环神经网络的时序性文本生成方法.通过现有语料库构建好一个词语集后,首先给定若干关键词,在聚类模型生成的词语集基础上进行关键词扩展生成首句.在确定首句的基础上,利用上下文模型对已生成内容进行压缩和上文特征获取,最后将之前上下文内容传递给递归神经网络模型实现后续句子的生成.该方法中首句生成的过程利用语言模型中的词汇集扩展,并通过上下文模型获取关联实现上下句的映射关系.本文采用BLEU自动评测方式和人工评测方式,建立起较为标准的评测系统,实验结果证实了该方法的有效性. 相似文献
13.
侯雪梅 《计算机工程与应用》2009,45(19):150-152
针对目前在噪音环境下语音识别系统性能较差的问题,利用小波神经网络融合了小波变换良好的时频局域化性质和RBF神经网络具有最佳分类能力和辨识能力等特性。构建了一个用小波基替代RBF网络中激活函数的小波-RBF神经网络结构,并采用全监督训练算法,实现了基于小波-RBF网络的抗噪语音识别系统。实验结果表明该系统比RBF网络具有更好的识别效果,尤其在噪声环境下,具有更强的鲁棒性。 相似文献
14.
域自适应算法被广泛应用于跨库语音情感识别中;然而,许多域自适应算法在追求减小域差异的同时,丧失了目标域样本的鉴别性,导致其以高密度的形式存在于模型决策边界处,降低了模型的性能。基于此,提出一种基于决策边界优化域自适应(DBODA)的跨库语音情感识别方法。首先利用卷积神经网络进行特征处理,随后将特征送入最大化核范数及均值差异(MNMD)模块,在减小域间差异的同时,最大化目标域情感预测概率矩阵的核范数,从而提升目标域样本的鉴别性并优化决策边界。在以Berlin、eNTERFACE和CASIA语音库为基准库设立的六组跨库实验中,所提方法的平均识别精度领先于其他算法1.68~11.01个百分点,说明所提模型有效降低了决策边界的样本密度,提升了预测的准确性。 相似文献
15.
目的 多人交互行为的识别在现实生活中有着广泛应用。现有的关于人类活动分析的研究主要集中在对单人简单行为的视频片段进行分类,而对于理解具有多人之间关系的复杂人类活动的问题还没有得到充分的解决。方法 针对多人交互动作中两人肢体行为的特点,本文提出基于骨架的时空建模方法,将时空建模特征输入到广义图卷积中进行特征学习,通过谱图卷积的高阶快速切比雪夫多项式进行逼近。同时对骨架之间的交互信息进行设计,通过捕获这种额外的交互信息增加动作识别的准确性。为增强时域信息的提取,创新性地将切片循环神经网络(recurrent neural network,RNN)应用于视频动作识别,以捕获整个动作序列依赖性信息。结果 本文在UT-Interaction数据集和SBU数据集上对本文算法进行评估,在UT-Interaction数据集中,与H-LSTCM(hierarchical long short-term concurrent memory)等算法进行了比较,相较于次好算法提高了0.7%,在SBU数据集中,相较于GCNConv(semi-supervised classification with graph convolutional networks)、RotClips+MTCNN(rotating cliips+multi-task convolutional neural netowrk)、SGC(simplifying graph convolutional)等算法分别提升了5.2%、1.03%、1.2%。同时也在SBU数据集中进行了融合实验,分别验证了不同连接与切片RNN的有效性。结论 本文提出的融合时空图卷积的交互识别方法,对于交互类动作的识别具有较高的准确率,普遍适用于对象之间产生互动的行为识别。 相似文献
16.
17.
为了解决语音识别中基于卷积位置信息的混合式注意力机制无法提取长期有效位置信息的问题,提出了一种捕捉长期有效位置信息的新型混合式注意力机制。首先,对当前时刻生成的注意力得分作卷积来提取多通道特征图,并通过全局平均池化来得到恒定维度的特征向量;接着,引入长短期记忆网络(long short-term memory,LSTM)单元作为外部记忆模块,并以生成的特征向量作为输入,生成下一时刻的位置信息向量;最后,结合经典的LAS(listen,attend and spell)模型来验证提出方案的有效性。实验结果表明,该方案能充分考虑过去多个时刻的注意力得分。相对于基于卷积位置信息的LAS模型,该方案在纯净和含噪语音数据集上取得的标签错误率分别减少了1.8%和2.21%。 相似文献
18.
卷积神经网络的感受野大小与卷积核的尺寸相关,传统的卷积采用了固定大小的卷积核,限制了网络模型的特征感知能力;此外,卷积神经网络使用参数共享机制,对空间区域中所有的样本点采用了相同的特征提取方式,然而带噪频谱图噪声信号与干净语音信号的分布存在差异,特别是在复杂噪声环境下,使得传统卷积方式难以实现高质量的语音信号特征提取和过滤.为了解决上述问题,提出了多尺度区域自适应卷积模块,利用多尺度信息提升模型的特征感知能力;根据对应采样点的特征值自适应地分配区域卷积权重,实现区域自适应卷积,提升模型过滤噪声的能力.在TIMIT公开数据集上的实验表明,提出的算法在语音质量和可懂度的评价指标上取得了更优的实验结果. 相似文献
19.
为提高仅包含少量训练样本的图像识别准确率,利用卷积神经网络作为图像的特征提取器,提出一种基于卷积神经网络的小样本图像识别方法。在原始小数据集中引入数据增强变换,扩充数据样本的范围;在此基础上将大规模数据集上的源预训练模型在目标小数据集上进行迁移训练,提取除最后全连接层之外的模型权重和图像特征;结合源预训练模型提取的特征,采用层冻结方法,微调目标小规模数据集上的卷积模型,得到最终分类识别结果。实验结果表明,该方法在小规模图像数据集的识别问题中具有较高的准确率和鲁棒性。 相似文献