首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
轻量化、绿色环保和舒适安全性将成为我国汽车用材料未来发展方向,树脂基复合材料将是实现汽车轻量化、塑料化的材料之一.介绍了玻璃纤维毡增强热塑性复合材料(GMT)、长纤维增强热塑性复合材料(LET)、天然纤维增强热塑性复合材料(NMT)和碳纤维增强复合材料(CFRP)等的特点和应用实例分析.树脂基复合材料的应用是汽车轻量化设计和选材的发展趋势.  相似文献   

2.
纤维增强热塑性复合材料以其优异的综合性能被广泛用于大型民用飞机结构,但在复合材料成型过程中基体材料需要经历较高的工艺温度和降温速率;增强纤维和聚合物基体之间因热膨胀系数不匹配、铺层间各向异性和温度的梯度分布等因素将导致在基体中形成热残余应力,这将对所得热塑性复合材料构件的力学性能产生影响,需要在复合材料结构的设计和分析中加以考虑。为有效控制和降低复合材料制件中热残余应力,需要对其产生来源及发展机理进行分析。对热塑性复合材料中热残余应力的形成原因从三个不同层次进行讨论,并分析热塑性复合材料在成型过程中残余应力水平的控制方法,最后对热残余应力的测试方法进行研究,评价了各测试方法的优缺点。  相似文献   

3.
高性能热塑性树脂基复合材料的研究进展   总被引:11,自引:3,他引:11  
近些年来,纤维增强热塑性树脂基复合材料已逐步发展成为复合材料中一个高性能、低成本的新型材料家族。本文主要介绍了各种高性能工程塑料和增强纤维的发展,连续纤维增强热塑性树脂的浸渍工艺及成型工艺,最后还介绍了热塑性纤维复合材料的发展趋势。  相似文献   

4.
采用碱、蒸汽爆破等对剑麻纤维进行预处理,考察了不同预处理方法对剑麻纤维增强热塑性淀粉力学性能及降解性能的影响。结果表明:碱处理能够提高复合材料的力学性能,延长材料降解周期,是制备剑麻纤维增强热塑性淀粉复合材料有效的预处理方法;剑麻纤维增强热塑性淀粉的机理是甘油在淀粉及剑麻纤维之间起到桥梁作用,提高了热塑性淀粉与剑麻纤维的界面结合力,从而提高了复合材料的力学性能。  相似文献   

5.
Interest in carbon fiber reinforced composites based on polyaryl ether ketones (PAEKs) continues to grow, and is driven by their increasing use as metal replacement materials in high temperature, high‐performance applications. Though these materials have seen widespread use in oil, gas, aerospace, medical and transportation industries, applications are currently limited by the thermal and mechanical properties of available PAEK polymer chemistries and their carbon fiber composites as well as interfacial bonding with carbon fiber surfaces. This article reviews the state of the art of PAEK polymer chemistries, mechanical properties of their carbon fiber reinforced composites, and interfacial engineering techniques used to improve the fiber‐matrix interfacial bond strength. We also propose a roadmap to develop the next generation of high‐performance long fiber thermoplastic composites based on PAEKs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44441.  相似文献   

6.
BACKGROUND: Renewable resources and recyclable thermoplastic polymers provide an attractive eco‐friendly quality as well as environmental sustainability to the resulting natural fibre‐reinforced composites. The properties of polypropylene (PP)‐based composites reinforced with rice hulls or kenaf fibres were investigated with respect to their recyclability. Rice hulls from rice processing plants and natural lignocellulosic kenaf fibres from the bast of the plant Hibiscus cannabinus represent renewable sources that could be utilized for composites. Maleic anhydride‐grafted PP was used as a coupling agent to improve the interfacial adhesion between fillers and matrix. Composites containing 30 wt% reinforcement were manufactured by melt mixing and their mechanical and thermal properties were determined. The composites were then pelletized and reprocessed by melt mixing. Finally, structure/properties relationships were investigated as a function of the number of reprocessing cycles. RESULTS: It is found that the recycling processes do not induce very significant changes in flexural strength and thermal stability of the composites. In particular PP‐based composites reinforced with kenaf fibres are less sensitive to reprocessing cycles with respect to PP‐based composites reinforced with rice hulls. CONCLUSION: The response of PP‐based composites reinforced with rice hulls or kenaf fibres is promising since their properties remain almost unchanged after recycling processes. Moreover, the recycled composites are suitable for applications as construction materials for indoor applications. In fact, the flexural strength and modulus of these materials are comparable to those of conventional formaldehyde wood medium‐density fibreboards. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
Design of automotive components with over-molded short/continuous fiber reinforced thermoplastic composites necessitates understanding of their behavior under extreme outdoor conditions. The short, quasi-isotropic and over-molded short/continuous glass fiber reinforced polypropylene (PP) composite specimens were prepared as per standard and immersed in water until equilibration to study their relative moisture absorption characteristics and consequent mechanical behavior. As the absorbed moisture mostly occupied the interface between fiber and matrix in laminated composite inserts and moisture absorption of short fiber composite core is insignificant, the moisture absorption of over-molded composites is just above 50% of that of laminated composites. The flexural, interlaminar shear and impact behavior of equilibrated composites is primarily governed by the quantum of imbibed moisture of composite materials. Optical analysis of failed moisture equilibrated over-molded specimens showed a marginal delamination between plies of the inserts without any perceptible damage within the short fiber composite similar to dry as molded specimens.  相似文献   

8.
综述了玻纤增强热塑性复合材料界面结晶的形成机理及其研究进展,从结晶动力学的角度深入阐述了不同晶型(α晶和β晶)横晶的形成条件和结构特点,全面归纳了横晶形成的各种影响因素及研究者的不同观点,详细讨论了横晶对玻纤增强热塑性复合材料力学性能的影响,展望了热塑性复合材料界面结晶行为的研究动态。  相似文献   

9.
Due to their lightweight and excellent toughness, carbon fiber (CF) and its reinforced thermoplastic composites are suitable for high-performance applications such as aerospace, aviation, automotive and sport equipments. In this study, comprehensive detail is provided on the production of carbon fiber, its various forms and geometry and their corresponding effects on the mechanical properties of CF and its reinforced polypropylene (PP) and polyethylene (PE) composites. Here we discuss extensively various methods reported in literature on improving the interfacial fiber-matrix adhesion and dispersion in order to achieve better mechanical properties for such composites.  相似文献   

10.
The present study is aimed to prepare hybrid materials by incorporating layered silicates and microcrystalline cellulose into thermoplastic polymer. Using ethylene–propylene (EP) copolymer as thermoplastic polymer matrix and maleated EP (MEP) copolymer as compatibilizer, three types of composites were prepared by (i) melt mixing of cellulose with thermoplastics [I], (ii) melt mixing of clay with thermoplastics [II], and (iii) melt mixing of cellulose with the thermoplastic clay nanocomposites [III]. They were characterized by X‐ray diffractometry (XRD), differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Instron was used to measure the mechanical properties. The composites [II] and [III] that contain layered silicates were intercalated nanocomposites as confirmed by XRD and transmission electron microscopy. The improvement in tensile properties was observed in cellulose–fiber‐reinforced composites with increasing cellulose content. In nanocomposites [II] and [III], the tensile modulus was improved. The resistance of the cellulose composites [I] for water absorption decreased with increasing content of cellulose fibers. The incorporation of layered silicates reduced the water absorption of cellulose composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2672–2682, 2007  相似文献   

11.
长纤维增强热塑性复合材料的研究进展   总被引:10,自引:0,他引:10  
吴靖 《化工进展》1995,(2):1-4,9
本文论述了热塑性树脂基复合材料的发展特点。除介绍了最具发展潜力的长纤维增强热塑性复合材料的浸渍工艺和成型工艺外,还着重介绍了新型长纤维增强热塑性复合材料和其应用前景。  相似文献   

12.
Thermoplastics reinforced with random glass mat have high strength and stiffness; the fibers dominate the mechanical behavior of these composites. The results of this investigation have shown that fibers are ineffective for reinforcing hot-tool and vibration welded butt welds. The maximum weld strengths attained with GMT are comparable to the strengths of good welds of the unfilled material. The optimum hot-tool welding parameters for the reinforced materials are different from those for the unfilled material. Unfilled polypropylene is easier to weld than unfilled polyamide. This characteristic is also true of the reinforced materials. In vibration welding, high welding pressures and high amplitudes result in lower mechanical properties. The optimum penetration depends on the fiber content of the bulk material. This penetration dependence is different from that for unfilled thermoplastic, for which the mechanical properties are independent of the penetration once a steady state has been attained.  相似文献   

13.
This work was done with the aim to solve an important environmental issue regarding poly (ethylene terephthalate), (PET) wastes. Samples of recycled PET (r-PET) were reinforced with 10 to 30 wt% modified short glass fibers (SGF) through a melt mixing process in an internal mixer and their performance were assessed and compared with those of commercial glass reinforced PET through investigation of their rheology, morphology, thermal, and mechanical properties. It was found that the mechanical properties of the glass reinforced r-PET composites in most cases were comparable or even higher than those of the commercial grades. The impact strength of the 30 wt% SGF filled r-PET composite was about 30% higher than the commercial grades. This led to a conclusion that the PET wastes can be successfully converted to easily moldable thermoplastic materials by incorporation of 30 wt% SGF having a good balance of properties. Through investigation of rheological and morphological properties the optimum conditions for the best reinforcement performance were determined. The r-PET with 30 wt% glass fiber content showed the highest level of orientation and improved interaction with the r-PET matrix while having an acceptable flow behavior and processability. In spite of significant fiber breakage during the melt mixing process, leading to about 20 times reduction in the fiber aspect ratio, the composites maintained their good mechanical properties and showed a shear thinning behavior at high shear rates. The incorporated glass fibers acted as nucleating agents and improved the crystallization rate of r-PET leading to an overall increase in the crystallinity. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
本研究对三维机织热塑性复合材料的拉伸力学性能进行了测试,分析了三维机织热塑性复合材料预型件的结构(纱线的直径、三维机织物的结构)、预型件的预拉伸工艺(经纱和接结经的伸直程度)、复合成型工艺(成型压力)对复合材料的力学性能的影响.  相似文献   

15.
In fiber‐reinforced plastic materials, the fiber volume fraction is one of the most important parameters, and it strongly influences the composite properties. However, it is hard to improve impregnation and the fiber volume fraction in fiber‐reinforced thermoplastics because thermoplastic resins have high melt viscosities. This study explored a reformative solution impregnation method for molding fabric‐reinforced thermoplastic composites with a high fiber volume fraction. The fiber volume fraction was significantly increased, to 60%, which is equal to that of fiber‐reinforced thermosetting plastic materials. A comparison indicated that a fiber‐reinforced thermoplastic and a fiber‐reinforced thermosetting plastic with the same reinforcing fiber had similar tensile properties and that the proposed molding method is effective in thermoplastic composite manufacture. POLYM. COMPOS., 34:953–958, 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
In this work, long basalt fiber reinforced composites were investigated and compared with short basalt fiber reinforced compounds. The results show that long fiber reinforced thermoplastic composites are particularly advantageous in the respects of dynamic mechanical properties and injection molding shrinkage. The fiber orientation in long basalt fiber reinforced products fundamentally differs from short basalt fiber reinforced ones. This results in more isotropic molding shrinkage in case of long basalt fiber reinforced composites. The main advantage of the used long fiber thermoplastic technology is that the special long fiber reinforced pellet can be processed by most conventional injection molding machines. During extrusion compounding the fibers in the compound containing 30 wt% fibers are fragmented to an average length of 0.48 mm (typical of short fiber reinforced thermoplastic compounds), this length decreases further during injection molding to 0.20 mm. Contrarily using long fiber reinforced pellets and cautious injection molding parameters, an average fiber length of 1.8 mm can be achieved with a conventional injection molding machine, which increased the average length/diameter ratio from 14 to 130. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

17.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

18.
Unidirectionally reinforced thermoplastic composites of Nylon-6 and polypropylene oxide-Nylon-6 block copolymers have been prepared by the reaction injection molding (RIM)-pultrusion process. This process takes advantage of both the RIM and the pultrusion techniques, while avoiding their inherent shortcomings. It also represents a novel way of incorporating toughening rubber domains into a thermoplastic composite. The composites produced exhibit excellent mechanical integrity with essentially zero void content. The chemical and physical states of the composites produced by the process were probed in terms of mechanical relaxation behavior using a dynamic mechanical spectrometer. Due to the simultaneous occurrence of both polymerization and crystallization processes in the reacting system, the resulting material is in a thermodynamically nonequilibrium state. An annealing effect is shown to correspond structurally to an increase in matrix crystallinity and the degree of phase separation, Izod impact tests were used to compare Nylon-6 and rubber-toughened Nylon-6 RIM-pultruded composites. The potential of secondary processing was, demonstrated by compression molding of the RIM-pultruded composite rods.  相似文献   

19.
综述了国内碳纤维增强聚酰胺(PA6)、聚醚砜(PES)、聚碳酸酯(PC)、聚苯硫醚(PPS)、聚醚砜酮(PPESK),聚醚醚酮(PEEK)、热塑性聚酰亚胺(PI)等热塑性树脂基复合材料研究现状,对比了热固性树脂基复合材料与热塑性树脂基复合材料性能及成型工艺方面的差异,并对碳纤维增强热塑性树脂基复合材料的成型方法,碳纤维...  相似文献   

20.
本文通过直接挤出混炼的方法制备了长玻璃纤维增强聚丙烯复合材料,研究了长纤维增强聚丙烯复合材料高性能、低成本化的方法。通过与连续玻璃纤维增强聚丙烯织物的组合,获得了力学性能超过玻璃纤维毡增强聚丙烯复合材料的高性能复合材料。在树脂基体中掺混廉价的填料及回收的聚丙烯树脂,结合适当的填料表面处理方法及废弃回收树脂的增韧及抗老化改性,在力学性能保持一定水平的基础上,可有效降低材料的成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号