共查询到20条相似文献,搜索用时 237 毫秒
1.
2.
针对传统图像描述方法在图像对变化复杂时特征点配准精度低,且传统RANSAC算法计算稳定性差的问题,提出一种结合改进AKAZE特征与RANSAC算法的图像拼接算法.利用AKAZE算法构造非线性尺度空间提取图像特征点,采用卷积神经网络描述符生成128维特征向量描述图像特征点,通过精简特征点并在迭代中设定嵌套阈值改进RANS... 相似文献
3.
4.
由于可见光和红外的成像机理、成像波段不同,获取的遥感影像之间存在复杂的非线性辐射畸变,传统的配准方法难以实现两者的高精度配准。本文提出一种基于VoxelMorph的可见光和红外遥感影像配准方法,利用卷积神经网络对可见光和红外异源图像进行分步的精细化形变场计算,从而实现快速高精度配准。将可见光图像作为参考图像,利用U-Net网络计算待配准红外图像和参考(可见光)图像的形变场,实现全局对齐的仿射变换,然后通过空间转换网络进一步实现更高自由度变形。采用WHU-OPT-SAR数据集的实验结果表明,与基于尺度不变特征变换(SIFT)算法的传统配准方法相比,本文提出的基于VoxelMorph配准方法可以获得更好的配准效果,验证了基于VoxelMorph的配准方法在多源遥感影像领域的有效性。 相似文献
6.
无人机遥感影像自动无缝拼接技术研究 总被引:1,自引:0,他引:1
为了实现百幅无人机影像自动无缝拼接技术,以黄淮海平原的3个典型区为实验对象,基于航拍影像质量评价,运用特征的控制点配准算法和图像灰度融合的对比度调制法,开展上百幅多航带影像快速拼接实验。结果表明,航片质量最好的是洪泽湖地区,航带和影像扭曲度不高,其次是白洋淀地区,而黄河口地区的航高差值、航带弯曲度和最大旋转度相比较高,说明航带扭曲度高,航片偏移中心线的程度较大。以江苏省洪泽湖区QuickBird影像和实地监测点与航片做精度验证高达81.26%,说明此技术是可靠和可行的,对无人机航拍影像拼接工作具有一定的实用价值和科学参考依据。 相似文献
7.
传统无人机遥感影像自动无缝拼接技术无法精准匹配影像信息,导致无人机遥感影像拼接结果出现大量缝隙,拼接效果差。因此提出了基于控制点配准算法的无人机遥感影像自动无缝拼接技术。遵循无人机影像成像原理,获取无人机遥感影像,并将数据以图像格式文件形式存储。设置阈值,剔除最邻近域和次邻域比值大于阈值的控制点,对影像坐标平移和缩放数据标准化处理,彻底消除坐标变换对图像配准影响。构建相似变换矩阵,获取新的控制点集,使用直接线性变换算法预估变换矩阵,得到线性解。经过粗、细配准,确定不同图像重叠区域。搜索最佳拼接线,使用加权平均融合法消除拼接缝,由此设计拼接流程。由实验结果可知,该技术能够精准匹配影像信息,检测到影像最大分辨率为1000*800,具有良好拼接效果。 相似文献
8.
9.
研究了基于深度学习的遥感图像语义分割问题,将建筑物作为遥感图像中的待分割目标,采用语义分割算法将建筑物提取出来.提出了一种改进的U-net网络,根据分割实际需求,保持网络对目标提取特征能力的前提下,将原U-net网络的卷积核数量适当减少,降低了网络参数数量和计算复杂度;增加了Batch Normalization层抑制过拟合问题;在上采样部分增加特征图的局部信息以优化网络对于细节的分割效果.使用公开的数据集INRIA Aerial Image Dataset来评估改进的U-net网络的实际效果,和原U-net相比,单张图片训练速度提升了8%,分割精度也明显提升,训练中的过拟合情况得到改善.证明了本文改进的U-net网络具有对遥感图像的语义分割任务的有效性和可行性. 相似文献
10.
工业显微镜与图像拼接技术的结合被广泛应用于微观检测领域,通过创建高分辨率、大场景的微观图像,可以对半导体材料或电子器件进行大范围的表面质量评估和缺陷检测。然而在拼接过程中,由于显微图像分辨率高、特征信息丰富以及存在大量相似区域,导致图像配准准确率低,拼接时间过长。针对这种情况,提出了一种基于改进ORB算法的显微图像实时拼接方法,以实现快速配准和融合。首先通过相位相关法获得重叠区域的初始估计,然后通过改进的FAST算法对重叠区域图像进行特征点检测,并以BEBLID描述子替换BRIEF描述子进行特征描述,之后采用GMS算法对特征点进行粗匹配,并采用改进的RANSAC算法进行精细匹配并计算变换矩阵完成图像配准,最后通过非线性权重融合完成图像拼接。实验结果表明,本文提出的方法在具有良好的实时性的同时也能保持较高水平的准确率,且在图像的不同变化场景中也有良好的稳健性,可以满足显微图像实时拼接的要求。 相似文献
11.
为解决目前的遥感图像目标检测算法存在的对小尺度目标检测精度低和检测速度慢等问题,提出了一种基于深度学习的遥感图像目标检测与识别算法。首先,构建一个含有不同尺度大小的遥感图像的数据集用于模型的训练和测试;其次,基于原始的多尺度单发射击(SSD)网络模型,融入了设计的浅层特征融合模块、浅层特征增强模块和深层特征增强模块;最后,在训练策略上引入聚焦分类损失函数,以解决训练过程中正负样本失衡的问题。在高分辨率遥感图像数据集上进行实验,结果表明所提算法的检测平均精度均值(mAP)达到77.95%,相较于SSD网络模型提高了3.99个百分点,同时检测速度为33.8 frame/s。此外,在拓展实验中,改进算法对高分辨率遥感图像中模糊目标的检测效果也优于原多尺度单发射击网络模型。实验结果说明,所提改进算法能够有效地提高遥感图像目标检测的精度。 相似文献
12.
为解决目前的遥感图像目标检测算法存在的对小尺度目标检测精度低和检测速度慢等问题,提出了一种基于深度学习的遥感图像目标检测与识别算法。首先,构建一个含有不同尺度大小的遥感图像的数据集用于模型的训练和测试;其次,基于原始的多尺度单发射击(SSD)网络模型,融入了设计的浅层特征融合模块、浅层特征增强模块和深层特征增强模块;最后,在训练策略上引入聚焦分类损失函数,以解决训练过程中正负样本失衡的问题。在高分辨率遥感图像数据集上进行实验,结果表明所提算法的检测平均精度均值(mAP)达到77.95%,相较于SSD网络模型提高了3.99个百分点,同时检测速度为33.8 frame/s。此外,在拓展实验中,改进算法对高分辨率遥感图像中模糊目标的检测效果也优于原多尺度单发射击网络模型。实验结果说明,所提改进算法能够有效地提高遥感图像目标检测的精度。 相似文献
13.
深度学习的方法在图像识别和自然语言处理等方面展示了优异的性能。将卷积神经网络(Convolution Neural Network,CNN)用于高分辨率遥感影像分类。针对CNN用于遥感影像分类使用固定大小窗口遍历时,影像采样窗口数量过多,导致的分类效率低下问题,提出一种基于影像区域特性的采样窗口确定方法,提高分类效率。影像分类包括两个阶段:首先,利用卷积神经网络得到的特征对影像进行分类;然后,采用支撑向量机对第一步分类由于特征区分性不足造成的错分地物类别进行再分类。采用具有不同特性的遥感影像对所提方法进行了验证,实验结果表明,同现有的特征表示和分类方法相比,该方法的性能有明显改善。 相似文献
14.
针对前馈卷积神经网络(CNN)感受野较小、获取上下文信息不足、其特征提取卷积层只能提取到浅层特征的问题,提出改进的基于通道注意力反馈网络的遥感图像融合算法.首先,通过两层卷积层分别初步提取全色(PAN)图像的细节特征和低分辨率多光谱(LMS)图像的光谱特征;其次,将提取的特征和网络反馈的深层特征相结合,并将其输入到通道... 相似文献
15.
为消除图像镶嵌中的接缝现象,提出一种基于边缘的优化镶嵌线选取方法。对两幅待镶嵌图像进行直方图匹配后,计算得到差值图像,将差值图像和方向作为约束,对基准图像进行边缘提取,对不连续过渡边缘采用插值修补,优化镶嵌线选取。采用LandSat遥感图像进行实验,比较平滑度及对比度等指标,比较结果表明,该方法能够优化镶嵌效果,具有较高的应用价值。 相似文献
16.
针对传统的基于深度学习的遥感图像分类算法未能有效融合多种深度学习特征,且分类器性能欠佳的问题,提出一种改进的基于深度学习的高分辨率遥感图像分类算法。首先,设计并搭建一个七层卷积神经网络;其次,将高分辨率遥感图像样本输入到该网络中进行网络训练,得到最后两个全连接层输出作为遥感图像两种不同的高层特征;再次,针对该网络第五层池化层输出,采用主成分分析(PCA)进行降维,作为遥感图像的第三种高层特征;然后,将上述三种高层特征通过串联的形式进行融合,得到一种有效的基于深度学习的遥感图像特征;最后,设计了一种基于逻辑回归的遥感图像分类器,可以对遥感图像进行有效分类。与传统基于深度学习的遥感图像分类算法相比,所提算法分类准确率有较高提升。实验结果表明,该算法在分类准确率、误分类率和Kappa系数上表现优异,能实现良好的分类效果。 相似文献
17.
针对传统卷积神经网络(CNN)稀疏网络结构无法保留全连接网络密集计算的高效性和实验过程中激活函数的经验性选择造成结果不准确或计算量大的问题,提出一种改进卷积神经网络方法对遥感图像进行分类。首先,利用Inception模块的不同尺度卷积核提取图像多尺度特征,然后利用Maxout模型学习隐藏层节点的激活函数,最后通过Softmax方法对图像进行分类。在美国土地使用分类数据集(UCM_LandUse_21)上进行的实验结果表明,在卷积层数相同的情况下,所提方法比传统的CNN方法分类精度提高了约3.66%,比同样也基于多尺度深度卷积神经网络(MS_DCNN)方法分类精度提高了2.11%,比基于低层特征和中层特征的视觉词典等方法分类精度更是提高了10%以上。因此,所提方法具有较高的分类效率,适用于图像分类。 相似文献
18.
目的 克服传统遥感图像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,解决学习法中训练效率低和过拟合问题,同时削弱插值操作后的块效应,增强单幅遥感图像超分辨率重建效果。方法 首先构造基于四层卷积的深度神经网络结构,并在结构中前三层卷积后添加参数修正线性单元层和局部响应归一化层进行优化,经过训练得到遥感图像超分辨率重建模型,其次,对多波段遥感图像的亮度空间进行双三次插值,然后使用该模型对插值结果进行重建,并在亮度空间重建结果指导下,使用联合双边滤波来提升其色度空间边缘细节。结果 应用该方法对实验遥感图像进行2倍、3倍、4倍重建时在无参考指标上均优于对比方法,平均清晰度提升约2.5个单位,同时取得了较好的全参考评价结果,在2倍重建时峰值信噪比较传统插值法提升了约2 dB,且平均训练效率较其他学习法提升3倍以上,所得遥感图像重建结果在目视效果上更加细致、自然。结论 实验结果表明,本文设计的网络抗过拟合能力强、训练效率高,重建时针对单幅遥感图像,无需依赖图像序列且不受波段影响,重建结果细节表现较好,具有较强的普适性。 相似文献
19.
基于深度学习模型的遥感图像分割方法 总被引:1,自引:0,他引:1
利用遥感图像快速准确地检测地物信息是当前的研究热点。针对遥感图像地表物的传统人工目视解译分割方法效率低下和现有基于深度学习的遥感图像分割算法在复杂场景下准确率不高、背景噪声多的问题,提出一种基于改进的U-net架构与全连接条件随机场的图像分割算法。首先,融合VGG16和U-net构建新的网络模型,以有效提取具有高背景复杂度的遥感图像特征;然后,通过选取适当的激活函数和卷积方式,在提高图像分割准确率的同时显著降低模型预测时间;最后,在保证分割精度的基础上,使用全连接条件随机场进一步优化分割结果,以获得更加细致的分割边缘。在ISPRS提供的标准数据集Potsdam上进行的仿真测试表明,相较于U-net,所提算法的准确率、召回率和均交并比(MIoU)分别提升了15.06个百分点、29.11个百分点和0.3662,平均绝对误差(MAE)降低了0.02892。实验结果验证了该算法具备有效性和鲁棒性,是一种有效的遥感图像地表物提取算法。 相似文献
20.
针对直接利用互信息进行图像配准存在的误差和插值假象问题,结合图像的频谱特性提出了基于频域的互信息计算方法,引入退火的思想改进了梯度上升法,利用它迭代搜索互信息最大值,使用相关长度估算最佳参数域,使得参数初始化更接近于最大值。实验结果表明,该方法对于多谱段遥感图像,较之传统方法具有明显的收敛性和稳定性。 相似文献