首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological, thermal and mechanical properties of blends prepared from polypropylene (PP) and 1, 3 and 5 wt% of vermiculite (VMT) were studied. The samples were prepared in a twin-screw extruder. The addition of maleic anhydride-functionalized polypropylene (PP-g-MAH) was also investigated. The blend morphologies were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal properties of the composites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed that PP crystallizes on cooling at higher temperatures as VMT content increases. The increase in crystallization temperature was most evident for blends with 5 wt% VMT. The TGA results showed that the use of VMT particles to fill polypropylene increased the thermal stability of the composite. The mechanical properties, tensile modulus and tensile strength at yield point of the PP improved by the presence of VMT.  相似文献   

2.
The mechanical properties, melt rheology, and morphology of binary blends comprised of two polypropylene (PP) grades and two liquid crystalline polymers (LCP) have been studied. Compatibilization with polypropylene grafted with maleic anhydride (PP-g-MAH) has been attempted. A moderate increase in the tensile moduli and no enhancements in tensile strength have been revealed. Those findings have been attributed to the morphology of the blends, which is predominantly of the disperse mode. LCP fibers responsible for mechanical reinforcement were only exceptionally evidenced. Discussion of PP-LCP interfacial characteristics with respect to mechanical properties-morphology interrelations allowed evaluation of the compatibilizing efficiency of PP-g-MAH. Factors important for successful reinforcement of PP with LCP have been specified. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 969–980, 1997  相似文献   

3.
Ternary blends of polypropylene (PP), nylon 6 (N6) and polypropylene grafted with maleic anhydride (PP/N6/PP-g-MAH) as compatibilizer with up to 50 wt% of N6 were investigated. PP-g-MAH content was varied from 2.5 to 10%. Blends of the two polymers PP/N6 (80/20) without the compatibilizer were also prepared using an internal batch mixer and studied. The ternary blends showed different rheological properties at low and high shear rates. The difference depended on the amount of N6 dispersed phase. Co-continuous morphology was observed for the blend containing 50% N6. This blend also exhibited higher viscosity at low shear rate and lower viscosity at high shear rates than the value calculated by the simple rule of mixture. At higher shear rates, viscosity was lower than that given by the rule of mixture for all blend ratios. An increase in viscosity was observed in the 80/20 PP/N6 blend after the concentration of the interfacial agent (PP-g-MAH) was increased. Polyblends containing up to 30% N6 could be successfully melt spun into fibers. DSC results showed that dispersed and matrix phases in the fiber maintained crystallinity comparable to or better than the corresponding values found in the neat fibers. The dispersed phase was found to contain fibrils. By using SEM and LSCM analyses we were able to show that the N6 droplets coalesced during melt spinning which led to the development of fibrillar morphology.  相似文献   

4.
The objective of this work is to study the properties of blends that could result from the recycling of end-of-life vehicles (ELV). While ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) have been used extensively as elastomeric additives in poly(propylene) (PP), they can be substituted by ethylene-1-octene copolymer (EOC). As a consequence, the matter resulting from the sorting of ELV might be more complex and made of PP, EPR, and EOC. The effect of incorporating EOC [that is a polyethylene elastomer (PEE)] and maleic anhydride grafted polypropylene (PP-g-MAH) on the rheological, thermal, and morphological properties of PP/EPR blends has been investigated. Blends of various compositions (with and without compatibilizer) were prepared using a corotating twin-screw extruder. The results were compared to the ones presented by a commercial (PP/EPR) blend. The EPR phase is dispersed in the form of spherical particles in (PP/EPR). The EOC phase is dispersed in the form of aggregated particles. Dynamic viscoelastic and differential scanning calorimetry properties of (PP/EPR)/EOC blends shows the incompatibility of the components even in presence of PP-g-MAH copolymer. POLYM. ENG. SCI., 47:1009–1015, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
The objective of this work was to study the compatibilizer effect on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blends. The blends were coextruded and injection molded in various ratios of ABS with and without compatibilizers. Universal testing machine was employed to analyze the tensile properties of basic PP/ABS binary blends. From the mechanical testing, the impact and tensile properties of PP/ABS blend were optimized at 80/20 weight ratio. Various compatibilizers such as PP-g-MAH, SEBS-g-MAH and ethylene α-olefin copolymer were used and their comparative performance on binary blend was enumerated. Hybrid compatibilization effect was also studied and reported. However, the addition of compatibilizers showed the maximum increase in impact strength attributed to rubber toughening effect of ABS. The effect of compatibilizers on morphological properties was examined using scanning electron microscopy (SEM). SEM micrographs depicted the more efficient dispersion of ABS particles in PP matrix with the addition of compatibilizers. Further, interparticle distance analysis was carried out to evaluate the rubber toughening effect. The ABS droplet size in compatibilized PP/ABS blend was brought to minimum of 3.2 μm from 9.9 μm with the addition of compatibilizers. The melt rheology of PP/ABS blend systems was investigated through parallel plate arrangement in frequency sweep. Linear viscoelastic properties like storage (G′) and loss (G″) modulus and complex viscosity (η*) have been reported with reference to the virgin materials. It is understood that the combination of compatibilizers (hybrid compatibilizer) had a considerable effect on the overall blend properties.  相似文献   

6.
A novel process using ultrasonic irradiation to enhance nanosilica dispersion in polypropylene-based nanocomposites has been proposed and investigated. The nanocomposites were isotactic polypropylene reinforced with silica nanoparticles at 3 wt% loading level. Ultrasonic processing in the melt state is an effective method for improving nanosilica dispersion. The effectiveness of the proposed ultrasonic processing technique on polypropylene nanocomposites was evaluated by XRD and transmission electron microscopy (TEM). Poly(propylene-g-maleic anhydride) copolymer (PP-g-MAH) containing 5 wt% maleic anhydride content was added to nanocomposites at 0.5 wt% concentration based on silica content. PP-g-MAH plays an important role in nanosilica dispersion in polymer matrix and interface interaction. The reaction of maleic anhydride groups with the hydroxyl groups on the surface of nanosilica was characterized by FTIR spectrum. The final nanocomposites result in a further enhancement of mechanical properties because of silica agglomerate reduction and improving interface combination, even loading level being much lower than that of ordinary fillers in conventional composites. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
The spray-freeze drying (SFD) technique was applied to sonicated aqueous suspensions of spray-dried montmorillonite clay (MMT) to produce highly porous agglomerates (SFD-MMT). Both MMT (used as a reference) and SFD-MMT were subsequently incorporated in polypropylene (PP) via melt compounding to produce 2 wt % nanocomposites with and without maleic anhydride grafted polypropylene (PP-g-MA). Polypropylene nanocomposites containing SFD-MMT exhibited thinner silicate flake layers compared to large agglomerates in PP/MMT nanocomposites. SFD-MMT particles became even more finer in the presence of PP-g-MA (i.e., in PP/PP-g-MA /SFD-MMT) where it hindered PP crystallization instead of serving as nucleation sites for the PP crystallization during rapid cooling. SFD-MMT improved the thermal stability of PP/PP-g-MA by 30°C compared to only 5–8°C for MMT/nanocomposites. MMT acts as a heterogeneous nucleating agent in the nucleation-controlled PP nanocomposites, but the hindrance effect was observed for the PP/PP-g-MA with SFD-MMT. PP/PP-g-MA/SFD-MMT exhibited twice the edge surface energy as compared to PP/PP-g-MA/MMT. The incorporation of both types of MMT raised the tensile moduli of PP and PP/PP-g-MA, with no improvement in their tensile strength and a decrease in the elongation at break. The PP/PP-g-MA/SFD-MMT showed brittle failure. POLYM. ENG. SCI., 60:168–179, 2020. © 2019 Society of Plastics Engineers  相似文献   

8.
The reactive compatibilization of blends consisting polypropylene (PP) and thermoplastic starch (TPS) (70/30) with different portions of PP-grafted maleic anhydride (PP-g-MA) is carried out by melt mixing. The esterification reaction between the starch hydroxyl and the PP-g-MA groups proved by the FTIR leads to a compatibility improvement. The dynamic rheological properties, morphology, elongation at break, and the impact strength of the blends were studied. The SEM images show that increasing the compatibilizer concentration reduces the dispersed TPS droplet size. The generalized Zener model states that an elastic interface is established (minimum α value) and enables us to predict the dynamic rheological properties of our blends in a longer frequency range to where the current experimental limitation exists. The modified Cross model is implemented to confirm better adhesion between phases when 20 wt % PP-g-MA is used (minimum ac value). The increase in the dynamic viscoelastic moduli at concentrations up to 20 wt % and the observed plateau at the elongation at break point at this concentration confirmed that this concentration is the optimum for the maximum stress transfer. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48742.  相似文献   

9.
Among modified Poly(propylene)s (PPs) grafted with polar monomers, PP grafted with maleic anhydride (PP-g-MAH) is known to be the most efficient compatibilizer for PP/clay nanocomposites, since it provides well-dispersed nanostructures and yields optimal physical properties of the nanocomposites. One drawback of this material, however, is that it becomes brittle and its viscosity decreases drastically, leading to nanocomposites with low toughness as the graft degree of MAH increases. Therefore, there is a limitation to increasing both stiffness and toughness of PP/clay nanocomposites with PP-g-MAH. In this study, we investigated the performance of a PP grafted with maleic anhydride and styrene (PP-g-MAH-St) as compatibilizers in PP/clay nanocomposites. It was found that the incorporation of styrene as a comonomer prevents molecular weight reduction of the PP main chain upon high loading of a radical initiator for high graft degree of MAH. The compatibilizers (PP-g-MAH-St) thus obtained show good compatibilizing performance in PP/clay nanocomposites. The PP/clay nanocomposites compatibilized by PP-g-MAH-St show both high stiffness and toughness, which is accomplished by using a compatibilizer of higher viscosity compared with PP-g-MAH.  相似文献   

10.
This work deals with the effect of compatibilizer on the morphological, thermal, rheological, and mechanical properties of polypropylene/polycarbonate (PP/ PC) blends. The blends, containing between 0 to 30 vol % of polycarbonate and a compatibilizer, were prepared by means of a twin-screw extruder. The compatibilizer was produced by grafting glycidyl methacrylate (GMA) onto polypropylene in the molten state. Blend morphologies were controlled by adding PP-g-GMA as compatibilizer during melt processing, thus changing dispersion and interfacial adhesion of the polycarbonate phase. With PP-g-GMA, volume fractions increased from 2.5 to 20, and much finer dispersions of discrete polycarbonate phase with average domain sizes decreased from 35 to 3 μm were obtained. The WAXD spectra showed that the crystal structure of neat PP was different from that in blends. The DSC results suggested that the degree of crystallization of PP in blends decreased as PC content and compatibilizer increased. The mechanical properties significantly changed after addition of PP-g-GMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1857–1863, 1997  相似文献   

11.
Thermoplastic elastomers have been prepared by blending polypropylene (PP), natural rubber (NR), and recycle rubber powder (RRP). The blends were melt-mixed using a Brabender Plasticorder torque rheometer at 190°C and 50 rpm. A fixed 70:30 blend ratio (wt%) of PP and rubber was prepared. The effect of partial replacement of NR with RRP at a fixed rubber content (NR+RRP), 30 wt% on mechanical properties, swelling behavior, torque development, and morphological properties of PP/NR/RRP blends was studied. Results show that the tensile strength, Young's modulus, and swelling resistance increase with increasing RRP content in the PP/NR/RRP blends whereas the stabilization torque and elongation at break exhibit opposite trend.  相似文献   

12.
Dong Wang 《Polymer》2006,47(23):7859-7863
A novel strategy for compatibilization of ternary polymer blends was described. PP (polyolefins)/PA6 (engineering plastics)/PS (styrene polymers) was selected as a model ternary blend system, and the compatibilization effect was investigated by means of SEM, rheometer, dynamic mechanical thermal analysis and mechanical testing. The results indicated that, as a ternary polymer blend compatibilizer, styrene and maleic anhydride dual monomers melt grafted polypropylene [PP-g-(MAH-co-St)] showed more effective compatibilization in the PP/PA6/PS ternary blend system than PP-g-MAH, PP-g-St and their mixture. The good compatibilizing effect of PP-g-(MAH-co-St) can be explained by two mechanisms. One is the in situ formation of [PP-g-(MAH-co-St)]-g-PA6 copolymer at the PP/PA6 interface, and the other is that it also contains styrene blocks, resulting in chemical affinity with PS and PP homopolymers.  相似文献   

13.
The synthesis of graft copolymers by the grafting “onto” process in the molten state was described. Functional oligomers obtained by telomerization or by ATRP were reacted onto maleic anhydride grafted polypropylene (PP-g-MAH) and poly(ethylene-ter-maleic anhydride-ter-methyl acrylate) (P(E-ter-MAH-ter-MeA)) to obtain PP-g-PMMA and P(E-ter-MAH-ter-MeA)-g-PMMA graft copolymers, respectively. The grafting of different mono-functional oligomers bearing hydroxyl, aliphatic amine or aromatic amine functions was investigated at 180 °C and at 200 °C. The grafting efficiency was very low in the case of hydroxyl-terminated PMMA, while the amine-terminated PMMA led to high yields. In the last part, PP-g-PMMA and P(E-ter-MAH-ter-MeA)-g-PMMA graft copolymers were synthesized by the reaction of aliphatic amine functional PMMA oligomers onto PP-g-MAH and P(E-ter-MAH-ter-MeA), respectively. The influence of the molecular weight of PMMA oligomers was investigated and showed that he grafting efficiency slightly decreases with the increasing molecular weight. However, this process allows the synthesis of PP-g-PMMA graft copolymers containing 6-45 wt% of PMMA side chains. The microstructure of the nanostructured PP-g-PMMA and P(E-ter-MAH-ter-MeA)-g-PMMA graft copolymers was investigated by TEM and SEM. This was established that the addition of PP-g-PMMA in PP/PMMA binary blends allows to control their morphologies and stabilities.  相似文献   

14.
Dean Shi  Guo-Hua Hu  Zhuo Ke  Jinghua Yin 《Polymer》2006,47(13):4659-4666
This paper deals with the dynamic rheological behavior of polypropylene/polyamide6 (PP/PA6) uncompatibilized blends and those compatibilized with a maleic anhydride grafted PP (PP/PP-g-MAH/PA6). The terminal relaxation times of the blends predicted by the Palierne emulsion model were compared with those obtained from experimental relaxation time spectra. The Palierne model succeeded well in describing PP/PA6 uncompatibilized blends with relatively low dispersed phase contents (10 wt%) and failed doing so for those of which the dispersed contents were high (30 wt%). It also failed for the compatibilized ones, irrespective of the dispersed phase content (10 or 30 wt%) and whether or not interface relaxation was taken into consideration. In the case of the uncompatibilized blend with high dispersed-phase content, interconnections among inclusions of the dispersed phase were responsible for the failure of the Palierne model. As for the compatiblized blends, in addition to particle interconnections, the existence of emulsion-in-emulsion (EE) structures was another factor responsible for the failure of Palierne model. A methodology was developed to use Palierne emulsion model upon taking into account the effects of the EE structure on the viscosity of the continuous phase and the effective volume fraction of the dispersed phase.  相似文献   

15.
β-Nucleated polypropylene (PP), uncompatibilized β-nucleated PP/poly(trimethylene terephthalate) (PTT), β-nucleated PP/PTT blends compatibilized with maleic anhydride (MA)-grafted PP (PP-g-MA), and styrene–ethylene–propylene copolymer were prepared with a twin-screw extruder. The morphology, compatibility, crystallization characteristic, melting behavior, and crystallization kinetics were investigated. The result shows that β-nucleated PP was incompatible with PTT, and the addition of the two compatibilizers decreased the interfacial tension between β-nucleated PP and PTT; this led to improved dispersion and strengthened interfacial bonding in the blends. PP-g-MA had a better compatibilization effect. All of the researched β-nucleated PP/PTT blends contained β crystals of PP, and the compatibilizers exhibited synergistic effects with the β-nucleating agent to further increase the content of β crystals. Nonisothermal kinetic analysis indicated that Mo's method described the nonisothermal crystallization behavior of the β-nucleated PP/PTT blends satisfactorily, and the Avrami approach could only describe the early stage of the crystallization appropriately, whereas the Ozawa method failed to have the same effect. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The possibility of polypropylene (PP) modification by regenerated polyurethane (PU), obtained after partial thermochemical decomposition of waste PU, has been studied. The degradation product was a thermoplastic mixture, applicable for reuse without any purification and fractionation. It was proved that regenerated PU could be reused as an effective polymeric plasticizer for PP and that the addition of regenerated PU did not decrease the thermal stability of PP. In order to improve further the elongation at break of PP modified by regenerated PU, a third component was added to the PP/(regenerated PU) blend. The influence of the third component on the mechanical properties and thermal stability of the blends was evaluated by using a universal testing machine (UTM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The data showed that the elongations of PP/(regenerated PU) blends with styrene‐ethylene‐butylene‐styrene polymer (SEBS) were obviously better than those of the PP/(regenerated PU) blend without the third component and with PP‐g‐MA or SEBS‐g‐MA (MA = maleic anhydride). In addition, the thermal stability of PP/(regenerated PU) blends with a third component was almost same as that of the PP/(regenerated PU) blend without a third component. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

17.
Attempts have been made for the first time to employ graphitized nanodiamond with the cage-like structure to prepare thermoplastic elastomer (TPE) nanocomposites based on polypropylene (PP) and ethylene-propylene-diene rubber (EPDM), with improved tribo-dynamic properties. Samples were prepared via melt mixing process, and maleated polypropylene (PP-g-MAH) was used to promote the interfacial interactions between the components and partitioning of nanodiamond particles in polymer phases. Microstructure characterization revealed significant reduction in the size of EPDM droplets if nanodiamond particles are preferentially wetted by the polypropylene phase. Nanoindentation and scratch tests performed on the surface of prepared nanocomposites exhibited enhanced surface stiffness and scratch resistance. Rheomechanical spectroscopy (RMS) and dynamic mechanical analysis (DMTA) showed enhanced melt elasticity for the interfacially compatibilized nanocomposites, which is attributed to the antiplasticizing characteristics of the caged shape nanodiamond particles. More interestingly, nanodiamond particles exhibited plasticizing behavior for the nanocomposite in molten state. All interfacially compatibilized nanodiamond composites showed enhanced thermal resistivity. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Four kinds of compatibilizers—chlorinated polyethylene (normal CPE), highly chlorinated CPE, maleic anhydride grafted with polypropylene (MP), and chlorinated polypropylene (CPP)—were used to study the influence of compatibilizing agents on the properties of nitrile-butadiene rubber and polypropylene (NBR/PP) blends, a kind of thermoplastic elastomer (TPE). The results show that the most proper amount of normal CPE, highly chlorinated CPE, MP, and CPP are 9, 8, 7, and 6 wt%, respectively, in the NBR/PP blends. The CPP was the best compatibilizer for NBR/PP blends among the four. NBR/PP blends obtained excellent properties of thermoplastic materials and can be molded with the general processing technologies for thermoplastics, such as injection, extrusion, blow molding, and the like. The mechanical properties are similar to that of Geolast, produced by Monsanto Company, and exceed the Chinese national criterion (GB7527-87). The tensile strength was 13.8 MPa; the elongation at break was 290%; and the compression set was 32%. After the blends were immersed in oil for 70 h, the tensile strength was 10.4 MPa, and the degree of oil absorption was 12%. The compatibility of the blends was consistent with the morphology from transmission electron microscopy (TEM).  相似文献   

19.
The dynamic mechanical properties of both homopolypropylene (PPVC)/Maleated Poly-propylene (PP-g-MA) and ethylene-propylene block copolymer (PPSC)/Maleated Poly-propylene (PP-g-MA) blends have been studied by using a dynamic mechanical thermal analyzer (PL-DMTA MKII) over a wide temperature range, covering a frequency zone from 0.3 to 30 Hz. With increasing content of PP-g-MA, α relaxation of both blends gradually shift to a lower temperature and the apparent activation energy ΔEα increases. In PPVC/PP-g-MA blends, β relaxation shifts to a higher temperature as the content of PP-g-MA increases from 0 to 20 wt % and then change unobviously for further varying content of PP-g-MA from 20 to 35 wt %. On the contrary, in the PPSC/PP-g-MA blends β1 relaxation, the apparent activation energy ΔEβ1 and β2 relaxation are almost unchanged with blend composition, while ΔEβ2 increases with an increase of PP-g-MA content. In the composition range studied, storage modulus É value for PPSC/PP-g-MA blends decreases progressively between β2 and α relaxation with increasing temperature, but in the region the increment for PPVC/PP-g-MA blends is independent of temperature. The flexural properties of PPVC/PP-g-MA blend show more obvious improvement on PP than one of PPSC/PP-g-MA blends. Scanning electron micrographs of fracture surfaces of the blends clearly demonstrate two-phase morphology, viz. the discrete particles homogeneously disperse in the continous phase, the main difference in the morphology between both blends is that the interaction between the particles and the continuous phase is stronger for for PPVC/PP-g-MA than for PPSC/PP-g-MA blend. By the correlation of the morphology with dynamic and mechanical properties of the blends, the variation of the relaxation behavior and mechanical properties with the componenet structure, blend composition, vibration frequency, and as well as the features observed in these variation are reasonably interpreted. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Rheology, phase behavior and morphology of poly(ethylene terephthalate)/polypropylene (PET/PP) blends compatibilized with maleic-anhydrate-grafted-PP (PP-g-MA) and n-butyl-acrylate-glycidyl-methacrylate-ethylene (EBGMA) were studied. According to infrared spectroscopy results, whereas PP-g-MA was merely capable of reacting with hydroxyl groups of PET, epoxy groups of EBGMA could react with both the hydroxyl and carboxyl end groups of PET. The enhanced compatibilizing effect of EBGMA on PET/PP systems over PP-g-MA was also revealed by scanning electron microscopy and mechanical experiments. From frequency and temperature sweep rheological experiments, the dynamic characteristics of the compatibilized blends found to be improved in comparison with those of the uncompatibilized system. Such enhancement was interpreted as a result of the higher miscibility of the compatibilized blends which was further supported by Cole–Cole plot analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号